МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Химии и технологии материалов современной энергетики»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 5 от 28.06.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ТЕХНОЛОГИЯ КЕРАМИЧЕСКОГО ТОПЛИВА

СПЕЦИАЛЬНОСТЬ

18.05.02 Химическая технология материалов современной энергетики НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Химическая технология материалов ядерного топливного цикла

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
10	5	180	32	32	0	0	116	Экз.
Итого	5	180	32	32	0	0	116	

Аннотация

Рабочая программа дисциплины «Технология керамического топлива» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 18.05.02 «Химическая технология материалов современной энергетики», образовательной программы «Химическая технология материалов ядерного топливного цикла».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 оксиды урана и способы их получения;
- 3.2 особенности химических свойств оксидов урана;
- 3.3 технологию получения диоксида урана керамического сорта;
- 3.4 особенности кристаллического строения оксидов урана;
- 3.5 технологию спекания диоксида урана.

2) уметь:

- У.1 рассчитывать степень превращения оксидов урана в диоксид урана;
- У.2 рассчитывать тепловые режимы спекания керамического ядерного топлива;
- У.3 определять равновесные составы, равновесные выхода;
- У.4 осуществлять подбор подходящего оборудования по принципу его работы и производительности;
- У.5 пользоваться литературными источниками, например монографиями, справочниками, периодическими изданиями (техническими и реферативными журналами), материалами конференций и другими источниками дополнительной информации.

3) владеть или быть в состоянии продемонстрировать:

- В.1 решения различных задач прикладного характера;
- В.2 методами синтеза оксидов, фторидов и металлического урана;
- В.3 методами переработки бракованных изделий.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Технология керамического топлива» являются:

ознакомленит с технологией производства ядерного топлива, являющегося материалом для получения энергии в ядерных реакторах различного типа.

Дисциплина «Технология керамического топлива» является специальной. Она направлена на углубление и расширение знаний, полученных студентами при изучении базовых химических дисциплин. В то же время при подготовке инженеров-технологов по общеобразовательным химическим дисциплинам изучение свойств, методов получения, роли и места порошков металлов, порошков конструкционных и керамических материалов, порошков, применяемых в технологии изготовления ядерного топлива, а также их использование не предусмотрено. Однако при подготовке инженеров-технологов по данной специальности эти вопросы являются одними их главных.

Основными задачами дисциплины являются:

- подробное рассмотрение вышеуказанных вопросов таким образом, чтобы студенты, подготавливаемые на кафедре ХиТМСЭ по специальности "Химическая технология материалов современной энергетики", имели соответствующие знания по данным вопросам и могли свободно ориентироваться в поставленных перед ними задачах на производстве.

Неотъемлемой частью дисциплины является рассмотрение технико-экономических показателей изучаемых процессов и производств, а также вопросов безопасности осуществления тех или иных технологических процессов при обращении с ультрадисперсными порошками металлов, их оксидов, фторидов, хлоридов, а также с исходными компонентами для получения этих порошков, находящихся в твердом, жидком или газообразном состоянии.

Дисциплина нацелена на подготовку специалистов к:

- научно-исследовательской и производственно-технологической работе в области химической технологии ядерного топлива;
- модернизации существующих и разработке новых методов получения ядерного топлива;
- поиску и анализу профильной научно-технической информации, необходимой для решения конкретных инженерных задач, в том числе при выполнении междисципли-нарных проектов.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Технология керамического топлива» (Б1.В.ОД.1.7) - Профессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	
профессиональной	область знания	профессиональной	TC
деятельности (ЗПД)		компетенции;	Код и наименование индикатора
		Основание	достижения профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ опыта)	
	1		~
		нальной деятельности: техно	
Осуществление	1	1	3-ПК-2.2 Знать: технологический
технологического	и вторичное		процесс и оборудование для
процесса в	сырье,	<u> </u>	извлечения материалов ЯТЦ,
соответствии с		оборудования для извлечения	разделения изотопов легких
требованиями		1 '' 1	элементов
технологического	радиоактивные	цикла (ЯТЦ) атомной	У-ПК-2.2 Уметь: определять
регламента; Освоение	элементы, редкие	энергетики из природного и	необходимое технологическое
и ввод в эксплуатацию	металлы ядерного	техногенного сырья,	оборудование для переработки
новых			природного и техногенного сырья,
технологических			переработки ОЯТ и РАО,
процессов и	соединения и	радиоактивных отходов (РАО),	разделения изотопов легких
оборудования;	материалы на их	разделения изотопов легких	элементов
Организация и	основе; природное	элементов и их применения	В-ПК-2.2 Владеть: навыками
осуществление	и техногенное		технологических процессов или
входного контроля	сырье, содержащее		отдельных элементов оборудования
сырья и материалов,	изотопы легких		используемого для переработки
используемых в	элементов;		природного и техногенного сырья,
технологии материалов	технологические		переработки ОЯТ и РАО,
современной	процессы их		разделения изотопов легких
энергетики, изотопно	извлечения,		элементов
чистых веществ, их	концентрирования		
соединений	и очистки;		
	оборудование,		

20 2020	05	V a z v v v v v v v v v v v v v v v v v v	
Задача	Объект или	Код и наименование	
профессиональной	область знания	профессиональной	Код и наименование индикатора
деятельности (ЗПД)		компетенции;	достижения профессиональной
		Основание	компетенции
		(профессиональный	Romicionam
		стандарт-ПС, анализ опыта)	
	приборы и методы		
	обеспечения		
	аналитического		
	контроля		
	проведения этих		
	процессов в		
	лабораторных и		
	промышленных		
	условиях; технологические		
	процессы		
	обращения с ОЯТ		
	и РАО и методы		
	обеспечения		
	радиационной		
	безопасности и		
	реабилитации		
	территорий,		
	связанные с		
	использованием		
	ядерных объектов		
Осуществление		1	3-ПК-4 Знать: способы анализа
технологического	и вторичное	технологический процесс,	технологических процессов и
процесса в соответствии с	сырье, содержащие уран,		выявления его недостатков У-ПК-4 Уметь: анализировать
требованиями		его совершенствованию	технологический процесс, выявлять
технологического	радиоактивные		его недостатки и разрабатывать
регламента; Освоение	элементы, редкие		мероприятия по его
и ввод в эксплуатацию	металлы ядерного		совершенствованию
новых	назначения, их		В-ПК-4 Владеть: навыками
технологических	химические		разработки мероприятий по
процессов и	соединения и		совершенствованию
оборудования;	материалы на их		технологического процесса
Организация и	основе; природное		
осуществление	и техногенное		
входного контроля	сырье, содержащее		
сырья и материалов, используемых в	изотопы легких элементов;		
технологии материалов			
l *	процессы их		
энергетики, изотопно	извлечения,		
чистых веществ, их	концентрирования		
соединений	и очистки;		
	оборудование,		
	приборы и методы		
	обеспечения		
	аналитического		
	контроля		
	проведения этих		
	процессов в		
	лабораторных и промышленных		
	промышленных условиях;		
	технологические		
	процессы		
	обращения с ОЯТ		
		1	1

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
	и РАО и методы обеспечения радиационной безопасности и реабилитации территорий, связанные с использованием ядерных объектов		

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Технология керамического топлива» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (http://www.ssti.ru/education.html/Информация по образовательным программам).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по специальности 18.05.02 «Химическая технология материалов современной энергетики», образовательной программе «Химическая технология материалов ядерного топливного цикла».

Общая трудоемкость дисциплины составляет в зачетных единицах - 5, 180 час., обучение по дисциплине проходит в семестре 10.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Технология оксидов урана»
- раздел 2 «Нитридное топливо»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№	Мо Наумамарамуа раздала		тельност остоятел нтов и т	ьную ра	боту	Аттестационные мероприятия		Макс. балл
145	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
	10 семестр (17 недель)							
1	Технология оксидов	14	16		36		8/KP1	30

	урана					
2	Нитридное топливо	18	16	44	16/T1	30
	Экзамен			36		40
Итого за 10 семестр:		32	32	116		100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения компетенции	Номера разделов	Аттестационные мероприятия
— Знать: технологический процесс и оборудование для извлечения материалов ЯТЦ, разделения изотопов легких элементов (3-ПК-2.2)	1, 2	КР1, Т1, Экзамен (10 сем.)
— Уметь: определять необходимое технологическое оборудование для переработки природного и техногенного сырья, переработки ОЯТ и РАО, разделения изотопов легких элементов (У-ПК-2.2)	1, 2	КР1, Т1, Экзамен (10 сем.)
– Владеть: навыками технологических процессов или отдельных элементов оборудования используемого для переработки природного и техногенного сырья, переработки ОЯТ и РАО, разделения изотопов легких элементов (В-ПК-2.2)	1, 2	КР1, Т1, Экзамен (10 сем.)
 Знать: способы анализа технологических процессов и выявления его недостатков (3-ПК-4) 	2	T1, Экзамен (10 сем.)
– Уметь: анализировать технологический процесс, выявлять его недостатки и разрабатывать мероприятия по его совершенствованию (У-ПК-4)	2	T1, Экзамен (10 сем.)
– Владеть: навыками разработки мероприятий по совершенствованию технологического процесса (B-ПК-4)	2	T1, Экзамен (10 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Технология оксидов урана	
1.1 Оксиды урана. Строение и свойства. Способы получения оксидов	4
урана. ермодинамический анализ получения диоксида урана для	
ядерного топлива. "Мокрые" способы получения диоксида урана	
Технология диоксида урана для керамического ядерного топлива. Система	
уран – кислород: оксиды урана. Природные и синтетические оксиды урана.	
Получение керамического диоксида урана (UO2) через промежуточную	
стадию осаждения полиураната аммония (АДУ-процесс): общие принципы	
АДУ- процесса; полиуранаты аммония, их структура и свойства	

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
1.2 Газофазные методы получения диоксида урана. Восстановление	4
оксидов урана до диоксида урана. Свойства диоксида урана. Структура	
уранатов с позиций координационной теории химических соединений.	
Полимерные формы уранатов. Система UO2(NO3)2-NH4OH-H2O.	
Теоретические основы осаждения полиуранатов аммония из фторидных систем. Система UO3–HF–H2O.	
1.3 Подготовка смеси для прессования таблеток ядерного топлива.	2
Прессование таблеток. Особенности выделения полиуранатов аммония из	
фторидных растворов. Влияние условий осаждения на свойства	
полиуранатов аммония: влияние условий осаждения на размер кристаллитов	
полиуранатов аммония, фильтруемость пульпы и скорость отстаивания	
осадка, образование агрегатов и агломератов в процессе осаждения	
полиуранатов аммония. Термическое разложение полиуранатов аммония.	
Режимы осаждения полиуранатов аммония, восстановления промежуточных	
оксидов. Свойства конечных порошков UO2. Влияние условий осаждения	
полиуранатов аммония на свойства порошка UO2. Изменение удельной	
поверхности при термическом разложении полиуранатов аммония.	
1.4 Смешивание порошков. Выбор пластификатора. Основы технологии	2
смешения твердых тел	
1.5 Спекание таблеток. Свойства готового керамического ядерного	2
топлива. Теория и практика спекания керамического ядерного	
топлива Физико-химические основы спекания порошков. Свойства	
спеченной таблетки	
Итого по разделу 1:	14
Раздел 2 Нитридное топливо	
2.1 Нестехиометрия соединений урана и плутония. Кристаллическое	4
строение оксидов и нитридов. Химия соединений урана и плутония.	
Нестехиометрия соединений урана и плутония. еоретическое объяснение	
существования нестехиометрических соединений. Кристаллография и	
кристаллохимия. Теория строения кристаллов. Кристаллическое строение	
оксидов нитридов карбидов и других соединений урана и плутония.	
Материалы для керамического ядерного топлива	
2.2 Нитридное топливо, его преимущества, технология. Нитриды урана.	2
Строение и свойства. Способы получения нитридов урана.	
Термодинамический анализ получения мононитрида урана для ядерного	
топлива.	2
2.3 Получение нитридов урана. Карботермический способ получения	2
нитрида урана. Газофазный газотермический способ нитрида урана.	
Плазмохимический способ нитрида урана. Получение из элементов.	
Саморапространяющийся высокотемпературный синтез. Из гидрида урана и	
металлического урана.	2
2.4 Нитридное топливо. Подготовка смеси для прессования таблеток	2
ядерного топлива. Прессование таблеток. Теория и практика спекания	
нитридного керамического ядерного топлива.	2
2.5 МОКС топливо. Технология смешанного керамического топлива.	2
Оксиды плутония. Строение и свойства. Способы получения оксидов урана.	

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
2.6 Смешанное нитридное топливо. Получение нитрида плутония.	2
Подготовка смеси нитридов плутония и урана для прессования таблеток	
ядерного топлива. МОКС-топлива. Прессование таблеток. Условия для	
проведения процесса. Спекание таблеток. Свойства готового керамического	
ядерного МОКС топлива.	
2.7 МОХ топливо. Теория и практика спекания смешанного керамического	2
ядерного топлива. Изготовление ТВЭЛов Изготовление сборок	
2.8 Переработка облученного ядерного топлива.	2
Итого по разделу 2:	18
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

Лабораторный практикум в соответствии с рабочим учебным планом не предусмотрен.

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 4.

Таблица 4 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Технология оксидов урана	
1.1 Системы уран-кислород, их свойства. Особенности урана как	2
химического элемента. Взаимодействие урана с кислородом. Природные и	
синтетические оксиды урана, их структура и свойства. Характеристика	
оксидов урана в системе UO2-UO3 (по диаграмме). Поведение UO2 при	
окислении. Пирофорность и стабильность в процессе хранения.	
Термодинамический и кинетический анализ получения UO2.	
1.2 АДУ-процесс.	4
1.3 АУК-процесс. АУК-процесс. Карбонатные и карбонатно-фторидные	4
соединения уранила. Физико-химические свойства порошка UO2	
карбонатного происхождения.	
1.4 Переработка ГФУ. Схема переработки UF6 газопламенным методом	4
("сатурн"). Схема изготовления порошка UO2 путем переработки UF6	
методом восстановительного пирогидролиза ("сухая" конверсия).	
1.5 Контрольная работа. Контрольная работа по модулю 1	2
Итого по разделу 1:	16
Раздел 2 Нитридное топливо	
2.1 Теория формования керамики. Теория формования керамики:	4
формование изделий, полусухое прессование, вибрационное формование,	
шликерное литье. Спекание: процессы, протекающие при спекании, стадии	
спекания, усадка при спекании. Кинетика спекания. Технологические	
факторы, ускоряющие спекание.	

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
2.2 Кристаллические решетки. Геометрическая кристаллография,	2
элементы симметрии, кристаллохимия химия твердого тела. Типы	
кристаллических решеток. Плотнейшие шаровые упаковки. ГПУ, ГЦК.	
Кристаллические решетки веществ - каменная соль, сульфид цинка,	
флюорит. Дефекты кристаллической решетки.	
2.3 Технология диоксида урана. Технология диоксида урана. Структура	2
диоксида урана. Явление не стехиометрии в диоксиде урана.	
2.4 Особенности получения диоксида урана для атомной	2
промышленности. Аппаратурно-технологическая схема производства	
таблеток из диоксида урана. Основные конструкции аппаратов,	
используемых для получения оксидов. Формование и спекание керамики	
2.5 Производство таблеток UO2. Экскурсия на НЗХК	4
2.6 Контрольная работа. Контрольная работа по модулю 2	2
Итого по разделу 2:	16
Всего по практическим / семинарским занятиям дисциплины:	32

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: ІТметоды, Методы проблемного обучения, Обучение на основе опыта, Опережающая самостоятельная работа.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Работа в команде, Case-study, Обучение на основе опыта, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Работа в команде, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия		
	освоения			
ПК-2.2	3-ПК-2.2	КР1, Т1, Экзамен (10 сем.)		
ПК-2.2	У-ПК-2.2	КР1, Т1, Экзамен (10 сем.)		
ПК-2.2	В-ПК-2.2	КР1, Т1, Экзамен (10 сем.)		
ПК-4	3-ПК-4	Т1, Экзамен (10 сем.)		

ПК-4	У-ПК-4	Т1, Экзамен (10 сем.)
ПК-4	В-ПК-4	Т1, Экзамен (10 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 10 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах			
Текущая аттестация						
КР1	Контрольная работа	30	18			
T1	Тестирование	30	18			
	Сумма:	60	36			
Промежуточная аттестация						
Экзамен		40	24			
	Итого:	100	60			

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	Α	В	С	I)	Е	F
Оценка по 4-х бальной шкале	отлично (отл.)	T .			удовлетворительно (удовл.)		неудовлетворительно (неуд.)
Зачет	Зачтено			Не зачтено			

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (10 семестр):

- 1 Материалы для ядерного топлива
- 2 Характеристика оксидов урана в системе UO2 UO3 (по диаграмме)
- 3 Геометрическая кристаллография
- 4 элементы симметрии кристаллохимия химия твердого тела
- 5 элементы симметрии
- 6 Типы кристаллических решеток
- 7 Плотнейшие шаровые упаковки. ГПУ, ГЦК
- 8 Кристаллические решетки веществ каменная соль, сульфид цинка, флюорит
- 9 Дефекты кристаллической решетки
- 10 Технология диоксида урана
- 11 Структура диоксида урана
- 12 Явление не стехиометрии в диоксиде урана
- 13 Термодинамический анализ получения UO2
- 14 Общие принципы АДУ-процесса
- 15 Термическое разложение полиуранатов аммония
- 16 Получение таблетированного диоксида урана
- 17 АУК-процесс
- 18 Карбонатные соединения уранила
- 19 Пирофорность и стабильность в процессе хранения
- 20 Аппаратурно-технологическая схема производства таблеток из диоксида урана
- 21 Спекание таблеток
- 22 Характеристики исходных и конечных урановых продуктов
- 23 Схема переработки UF6 газопламенным методом («сатурн»)
- 24 Схема изготовления порошка UO2 путем переработки UF6 методом восстановительного пирогидролиза («сухая» конверсия)
 - 25 Нитриды и карбиды урана
 - 26 Карботермический метод получения нитрида урана
 - 27 Смешанное уран-плутониевое топливо
 - 28 Оборудование для синтеза нитрида и спекания
 - 29 Переработка облученного топлива

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Алексеев С. В. Дисперсионное ядерное топливо [Текст] / С. В. Алексеев, В. А. Зайцев, С. С. Толстоухов Москва: Техносфера, 2015 246 с.
- Л1.2 Алексеев С. В. Нитридное топливо для ядерной энергетики [Текст] / С. В. Алексеев, В. А. Зайцев Москва: Техносфера, 2013 240 с.
- Л1.3 Андреев Г. Г. Фторидные технологии в производстве ядерного топлива [Текст]: монография / Г. Г. Андреев, А. Н. Дьяченко; Министерство образования Российской Федерации, Национальный исследовательский Томский политехнический университет Томск: Изд-во ТПУ, 2014 150, [2] с.
- Л1.4 Гузеев В. В. Основы технологии урана [Электронный ресурс]: учебное пособие / В. В. Гузеев, Т. И. Гузеева Северск: Изд-во СТИ НИЯУ МИФИ, 2016 207 с.
- Л1.5 Двухкомпонентная ядерная энергетическая система с тепловыми и быстрыми реакторами в замкнутом ядерном топливном цикле [Текст] / П. Н. Алексеев [и др.]; под ред. Н. Н. Пономарева-Степного М.: Техносфера, 2016 160 с.

 Π 1.6 Жиганов А. Н. Технология диоксида урана для керамического ядерного топлива: учебное пособие для вузов / А. Н. Жиганов, В. В. Гузеев, Г. Г. Андреев - Томск: STT, 2002 - 328 с.

8.2 Дополнительная литература

Л2.1 eLIBRARY.RU [Электронный ресурс]: научная электронная библиотека - Москва: ООО "РУНЭБ", 2021

 Π 2.2 Бойко В. И. Ядерные технологии в различных сферах человеческой деятельности: учебное пособие / В. И. Бойко, Ф. П. Кошелев; Федеральное агентство по образованию, Томский политехнический университет; под ред. В. И. Кошелева - Томск: Изд-во ТПУ, 2006 - 342 с.

Л2.3 Кнотько А. В. Химия твердого тела: учебное пособие для вузов / А. В. Кнотько, И. А. Пресняков, Ю. Д. Третьяков - М.: Академия, 2006 - 301, [3] с.

Л2.4 Копырин А. А. Технология производства и радиохимической переработки ядерного топлива [Текст]: учебное пособие для вузов / А. А. Копырин, А. И. Карелин, В. А. Карелин - М.: Атом Энерго Издат, 2006 - 573, [3] с.

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ http://www.ssti.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода профессиональной деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к практическим занятиям, семинарам
- Подготовка к контрольным работам
- Подготовка к промежуточному контролю: Экзамен (10 семестр)

В течение 10 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): В.В. Гузеев