МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Машины и аппараты химических и атомных производств»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 5 от 28.06.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ ТЕОРИИ ПЛАСТИЧНОСТИ И РАЗРУШЕНИЯ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

18.03.02 Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Машины и аппараты химических производств

Форма обучения: очно-заочная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
3	2	72	4	0	4	4	64	Зач.
Итого	2	72	4	0	4	4	64	

Аннотация

Рабочая программа дисциплины «Основы теории пластичности и разрушения» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», образовательной программы «Машины и аппараты химических производств».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

- 1) знать:
- 3.1 Основные термины и определения в теории пластичности и разрушения
- 3.2 Основные методы определения критериев пластичности и разрушения
- 2) уметь:
- У.1 В зависимости от типа напряженности состояния (одноосное или двухосное) правильно записать условие прочности в опасной точке элемента конструкции
- У.2 В зависимости от состояния материала (пластичное или хрупкое) для решения задачи прочности правильно использовать соответствующую гипотезу прочности или теорию Мора
 - 3) владеть или быть в состоянии продемонстрировать:
- В.1 Решения инженерных задач в случае сложного сопротивления (сложных деформаций), например, изгиб и кручение вала и т.п
 - В.2 Оформления проведенных расчетов в соответствии с требованиями стандартов

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Основы теории пластичности и разрушения» являются:

научить студентов решению инженерных задач в случае сложного сопротивления (сложных деформаций), например, изгиб и кручение вала и т.п., и оформления проведенных расчетов в соответствии с требованиями стандартов

Основными задачами дисциплины являются:

изучение основных положений теории упругости, пластичности и разрушения материалов и математических методов механики.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Основы теории пластичности и разрушения» (Б1.Б.3.9) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции	
ОПК-2 Способен использовать	З-ОПК-2 Знать: математические, физические, физико-	
математические, физические, физико-	химические, химические методы расчётов технологических	
химические, химические методы для решения	процессов и оборудования с позиций решения задач	

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
задач профессиональной деятельности	профессиональной деятельности
	У-ОПК-2 Уметь: решать поставленные задачи своей
	профессиональной деятельности, основываясь на
	математических, физических и химических законах
	В-ОПК-2 Владеть: основными способами решения
	поставленных задач в области совершенствования
	технологических процессов и оборудования

Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

2	05 5	T.C			
Задача	Объект или область	Код и наименование	T.C.		
профессиональной	знания	профессиональной	Код и наименование		
деятельности (ЗПД)		компетенции;	индикатора достижения		
		Основание	профессиональной		
		(профессиональный	компетенции		
		стандарт-ПС, анализ опыта)			
	тип задач профессиональной деятельности: проектный				
1. изучение	- промышленные	ПК-2 Способен проводить	3-ПК-2 Знать: законы и		
нормативной	установки, включая	обоснование проектных	нормативные акты РФ в сфере		
документации по	системы	решений	производства, основные		
направлению	автоматизированного		нормативы и стандарты		
деятельности; 2.	управления; -		надзорных органов, СНиПы,		
участие в	системы		СанПины, ПУЭ, ПБ, НРБ		
проектировании	автоматизированного		У-ПК-2 Уметь: применять и		
	проектирования; -		учитывать свод правил РФ и		
профессиональной	сооружения очистки		требования надзорных органов в		
	сточных вод и		обосновании проектных решений		
	газовых выбросов,		В-ПК-2 Владеть: способами		
нормативных актов РФ			изложения проектных решений с		
в сфере производства;	утилизации		учётом требований надзорных		
3. оформление	теплоэнергетических		органов и законодательства РФ		
проектно-	потоков и вторичных				
10 1	материалов; - методы				
работ, в том числе, с	и средства оценки				
применением	состояния				
	окружающей среды и				
графических	защиты ее от				
программ; 4. анализ и	антропогенного				
оперативное	воздействия; -				
изменение схем и	действующие				
режимов работы	многоассортиментные				
оборудования	производства				
	химической и				
	смежных отраслей				
	промышленности.				

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Основы теории пластичности и разрушения» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (http://www.ssti.ru/education.html/Информация по образовательным программам).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения **«очно-заочная»** по направлению 18.03.02 «Энерго- и ресурсосберегающие процессы в химической технологии, нефтехимии и биотехнологии», образовательной программе «Машины и аппараты химических производств».

Общая трудоемкость дисциплины составляет в зачетных единицах -2, 72 час., обучение по дисциплине проходит в семестре 3.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Изучение теории пластичности и разрушения»
- раздел 2 «Решение инженерных задач»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No	Науптоморомую постоло	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные мероприятия		Макс. балл
№ Наименование раздела		Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
	3 семестр (18 неде				неделі	ь)		
1	Изучение теории пластичности и разрушения	4		2	49		4/KP1	30
2	Решение инженерных задач			2	15		5/ЛР1	30
Зачет			•				40	
Итого за 3 семестр: 4			4	64			100	

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
– Знать: математические, физические, физико-		
химические, химические методы расчётов		КР1, ЛР1, Зачет (3
технологических процессов и оборудования с позиций	1, 2	сем.)
решения задач профессиональной деятельности (3-ОПК-		CCM.)
2)		

— Уметь: решать поставленные задачи своей профессиональной деятельности, основываясь на математических, физических и химических законах (УОПК-2)	1, 2	КР1, ЛР1, Зачет (3 сем.)
– Владеть: основными способами решения поставленных задач в области совершенствования технологических процессов и оборудования (B-OIIK-2)	1, 2	КР1, ЛР1, Зачет (3 сем.)
— Знать: законы и нормативные акты РФ в сфере производства, основные нормативы и стандарты надзорных органов, СНиПы, СанПины, ПУЭ, ПБ, НРБ (3-ПК-2)	1, 2	КР1, ЛР1, Зачет (3 сем.)
– Уметь: применять и учитывать свод правил РФ и требования надзорных органов в обосновании проектных решений (У-ПК-2)	1, 2	КР1, ЛР1, Зачет (3 сем.)
– Владеть: способами изложения проектных решений с учётом требований надзорных органов и законодательства РФ (В-ПК-2)	1, 2	КР1, ЛР1, Зачет (3 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Изучение теории пластичности и разрушения	
1.1 Основные понятия и определения. Напряженное состояние в точке. Главные оси и главные напряжения. Построение круга Мора. Типы напряженных состояний. Деформированное состояние в точке. Обобщенный закон Гука. Потенциальная энергия деформации. Основные положения теории пластичности и разрушения. Гипотезы появления пластических деформаций.	3.5
1.2 Аттестация АР1.	0.5
Итого по разделу 1:	4
Всего по теоретическому разделу дисциплины:	4

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час		
Раздел 1 Изучение теории пластичности и разрушения			
1.1 Испытание на растяжение образцов из пластических масс.	2		

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Итого по разделу 1:	2
Раздел 2 Решение инженерных задач	
2.1 Определение твердости металлов на прессе Бринеля и приборе	2
Роквелла.	
Итого по разделу 2:	2
Всего по лабораторному практикуму дисциплины:	4

5.4 Тематика практических / семинарских занятий

Практические/семинарские занятия в соответствии с рабочим учебным планом не предусмотрены.

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: ІТ-методы, Работа в команде.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Поисковый метод, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: Работа в команде, Проектный метод, Поисковый метод.

Общее число часов занятий, проводимых в интерактивной форме – 4 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-2	3-ОПК-2	КР1, ЛР1, Зачет (3 сем.)
ОПК-2	У-ОПК-2	КР1, ЛР1, Зачет (3 сем.)
ОПК-2	В-ОПК-2	КР1, ЛР1, Зачет (3 сем.)
ПК-2	3-ПК-2	КР1, ЛР1, Зачет (3 сем.)
ПК-2	У-ПК-2	КР1, ЛР1, Зачет (3 сем.)
ПК-2	В-ПК-2	КР1, ЛР1, Зачет (3 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не

менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Зачета.

Аттестация в 3 семестре:

Вид		Максимальная	Минимальная
	Наименование видов контроля	положительная	положительная
контроля		оценка в баллах	оценка в баллах
	Текущая аттестац	ия	
КР1	Контрольная работа	30	18
ЛР1	Лабораторная работа	30	18
	Сумма:	60	36
	Промежуточная аттест	ация	
Зачет		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ЕСТЅ)	A	В	С	D		Е	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)		(xop.)		(удс	вл.)	(неуд.)
Зачет	Зачтено						Не зачтено

Оценка *«отлично»* выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Зачета (3 семестр):

- 1 Напряженное состояние в точке. Закон парности касательных напряжении.
- 2 Главные оси и главные напряжения, их определение.
- 3 Построение круга Мора.
- 4 Типы напряженных состоянии.
- 5 Деформированное состояние в точке.
- 6 Обобщенный закон Гука.
- 7 Потенциальная энергия деформации в общем случае напряженного состояния.
- 8 Обобщенное понятие коэффициента запаса прочности. Эквивалентное напряжение.

- 9 Гипотезы предельных напряженных состояний.
- 10 Теория предельных состоянии Мора. Определение эквивалентных напряжений.
- 11 Переход материала из упругого состояния в пластичное. Критерии пластичности.
- 12 Переход материала из упругого состояния в состояние разрушения. Понятие о разрушении.
 - 13 Теория трещинообразования Гриффитса.
- 14 Вязкость материалов, ее показатели. Композиционные материалы. Понятие об анизотропии вязкости.
 - 15 Сложное сопротивление. Порядок решения задачи.
 - 16 Сложное сопротивление. Изгиб и кручение.
 - 17 Сложное сопротивление. Кручение с растяжением-сжатием.
 - 18 Сложное сопротивление. Изгиб, кручение и растяжение-сжатие.
- 19 Определение коэффициента запаса прочности в случае двухосного напряженного состоя-ния.
 - 20 Сложное сопротивление. Косой изгиб.
 - 21 Сложное сопротивление. Изгиб с растяжением-сжатием.
 - 22 Сложное сопротивление. Внецентренное растяжение-сжатие.
 - 23 Расчет тонкостенных сосудов. Вывод уравнения Лапласа.
 - 24 Расчет на прочность сферических и цилиндрических сосудов.
 - 25 Динамические нагрузки. Методы решения динамических задач.
 - 26 Расчет на прочность при равноускоренном движении стержня.
 - 27 Расчет троса на прочность при подъеме (опускании) груза с ускорением.
 - 28 Расчет на прочность вращающегося тонкостенного кольца.
 - 29 Приближенная теория удара.
 - 30 Испытания материалов ударной нагрузкой. Ударная вязкость материала.
 - 31 Теория усталости. Основные понятия и определения.
- 32 Теория усталости. Основные типы циклов. Основные параметры цикла напряжений.
- 33 Испытания на усталость, их цель, виды, порядок, обработка результатов испытаний.
- 34 Кривая усталости. Определение предела выносливости при симметричном цикле нагруже-ния.
- 35 Определение предела выносливости при асимметричных циклах нагружения. Диаграмма Хэя.
- 36 Определение предела выносливости при асимметричных циклах нагружения. Диаграмма Смита.
 - 37 Основные факторы, влияющие на величину предела выносливости.
- 38 Определение коэффициента запаса прочности при симметричном цикле нагружения.
- 39 Определение коэффициента запаса прочности при асимметричном цикле нагружения.
 - 40 Практические меры борьбы с усталостью материалов.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

Л1.1 Молотников, В. Я. Теория упругости и пластичности [Электронный ресурс]: учебное пособие для вузов / Молотников В. Я., Молотникова А. А.; Молотникова А. А. — 2-е изд., стер. — Санкт-Петербург: Лань, 2023. — 532 с. — Книга из коллекции Лань - Инженерно-технические науки .— ISBN 978-5-507-47969-6 .—

[URL:https://e.lanbook.com/img/cover/book/335192.jpg].

Л1.2 Молотников, В. Я. Курс сопротивления материалов [Электронный ресурс] / Молотников В. Я. — 2-е изд., стер. — Санкт-Петербург: Лань, 2022. — 384 с. — Допущено Министерством сельского хозяйства Российской Федерации в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки дипломированного специалиста «Агроинженерия». — Книга из коллекции Лань - Инженерно-технические науки .— ISBN 978-5-8114-0649-4 .— [URL:https://e.lanbook.com/book/212261] .— [URL:https://e.lanbook.com/img/cover/book/212261.jpg].

Л1.3 Феодосьев, Всеволод Иванович. Сопротивление материалов: учебник для вузов / В. И. Феодосьев. — 15-е изд., испр. — М.: Изд-во МГТУ, 2010. — 590, [2] с.: ил. — (Механика в техническом университете; Т. 2). — Рекомендовано УМО вузов по университетскому политехническому образованию в качестве учебника. — Предметный указатель: с. 577-584.

8.2 Дополнительная литература

[URL:https://e.lanbook.com/book/335192]

Л2.1 Беляев, Н. М. Сборник задач по сопротивлению материалов [Электронный ресурс] / Беляев Н. М.,Паршин Л. К.,Мельников Б. Е.,Шерстнев В. А. — 5-е изд., стер. — Санкт-Петербург : Лань, 2022 .— 432 с. — Рекомендовано Учебно-методическим объединением по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям и специальностям в области техники и технологий .— Книга из коллекции Лань - Инженернотехнические науки .— ISBN 978-5-8114-0865-8 .— [URL:https://e.lanbook.com/book/209822] .— [URL:https://e.lanbook.com/img/cover/book/209822.jpg].

Л2.2 Куликов, Ю. А. Сопротивление материалов. Курс лекций [Электронный ресурс] / Куликов Ю. А. — Санкт-Петербург : Лань, 2022 .— 272 с. — Книга из коллекции Лань - Инженерно-технические науки .— ISBN 978-5-8114-2449-8 .— [URL:https://e.lanbook.com/book/209807] .— [URL:https://e.lanbook.com/img/cover/book/209807.jpg].

Л2.3 Сапунов, В.Т. Теория пластичности. Плоская задача. Экстремальные принципы и энергетические методы решения. Законы, уравнения и задачи циклической пластичности : учебное пособие для вузов / В. Т. Сапунов. — Москва : НИЯУ МИФИ, 2011. — ISBN 978-5-7262-1427-6 — [URL:http://library.mephi.ru/Data-IRBIS64/book-mephi/Sapunov Teoriya plastichnosti 2011.pdf].

Л2.4 Митрофанов Ю. А. Расчет вала на изгиб с кручением [Электронный ресурс]: руководство к расчетно-проектировочной работе / Ю. А. Митрофанов; Министерство образования и науки РФ, Национальный исследовательский ядерный университет "МИФИ", Северский технологический институт - филиал НИЯУ МИФИ (СТИ НИЯУ МИФИ) - Северск: Изд-во СТИ НИЯУ МИФИ, 2013 - 14 с.

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ http://www.ssti.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Подготовка к контрольным работам
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Проработка лекционного материала
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к промежуточному контролю: Зачет (3 семестр)

В течение 3 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Зачету по дисциплине. Студент на Зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): В.М. Бродский