МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Химии и технологии материалов современной энергетики»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 5 от 28.06.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ РАДИОХИМИИ

НАПРАВЛЕНИЕ ПОДГОТОВКИ
15.03.04 Автоматизация технологических процессов и производств
НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
Автоматизация технологических процессов и производств в химикотехнологической и энергетической отраслях

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
5	2	72	16	0	32	16	24	Зач.
Итого	2	72	16	0	32	16	24	

Аннотация

Рабочая программа дисциплины «Основы радиохимии» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.04 «Автоматизация технологических процессов и производств», образовательной программы «Автоматизация технологических процессов и производств в химико-технологической и энергетической отраслях».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основные понятия и определения радиохимии;
- 3.2 законы радиоактивного распада;
- 3.3 радиоактивные семейства урана, актиноурана и тория;
- 3.4 классификацию методов выделения и разделения;
- 3.5 основные законы, закономерности, механизмы и области применения методов выделения радионуклидов (сокристаллизация, дробная кристаллизация, адсорбционное соосаждение, электрохимические методы).

2) уметь:

- У.1 самостоятельно делать выбор средств детектирования любых радионуклидов;
- У.2 понимать и объяснять особенности физико-химического поведения радионуклидов в технологических системах, включая процессы, происходящие в ядерных реакторах;
- У.3 понимать и объяснять основные закономерности межфазного распределения радионуклидов и особенностей процесса изотопного обмена.

3) владеть или быть в состоянии продемонстрировать:

- В.1 навыками проведения радиометрических измерений;
- В.2 навыками обработки, анализа и осмысления результатов радиохимического выделения элементов и их радиометрического измерения;
 - В.З навыками представления итогов измерений в виде отчетов и публикаций.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Основы радиохимии» являются:

дать студентам систематические знания в области химии радиоактивных изотопов, веществ и законов их физико-химического поведения, а также химии ядерных превращений и сопутствующих им физико-химических процессов.

Основными задачами дисциплины являются:

- получение студентами знаний в области химии радиоактивных изотопов, веществ и законов их физико-химического поведения, а также химии ядерных превращений и сопутствующих им физико-химических процессов
- освоение студентами теоретических знаний в области общей и прикладной радиохимии
 - привитие студентам навыков работы с радиоактивными веществами

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Основы радиохимии» (Б1.В.ОД.1.2) - Профессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	3-УК-1 Знать: методики сбора и обработки информации; актуальные российские и зарубежные источники информации в сфере профессиональной деятельности; метод системного анализа У-УК-1 Уметь: применять методики поиска, сбора и обработки информации; осуществлять критический анализ и синтез информации, полученной из разных источников В-УК-1 Владеть: методами поиска, сбора и обработки, критического анализа и синтеза информации; методикой системного подхода для решения поставленных задач

Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

, <u>, , , , , , , , , , , , , , , , , , </u>	пальной деятельн		1
Задача профессиональной	Объект или область знания	Код и наименование профессиональной	
деятельности (ЗПД)	ооласть знания	<u> </u>	Код и наименование индикатора
деятельности (этід)		компетенции; Основание	достижения профессиональной
			компетенции
		(профессиональный	·
		стандарт-ПС, анализ опыта)	
тип задач	* *	ой деятельности: проектно-	10 1
Изучение технической		ПК-1 Способен принимать	3-ПК-1 Знать: основные
		участие в проектировании	государственные и отраслевые
* '	1 1	объектов профессиональной	стандарты, требования,
	и технологических	деятельности в соответствии с	предъявляемые к нормативно-
технического задания	процессов	техническим заданием и	технической документации при
1 1	изготовление	нормативно-технической	проектировании, различные
обследование объекта	продукции	документацией, соблюдая	технические, технологические и
автоматизации.	различного	различные технические,	экологические требования
Составление отчета о	назначения, а	технологические и	У-ПК-1 Уметь: проектировать
выполненном	также системы	экологические требования	объекты профессиональной
обследовании объекта	контроля качества		деятельности в соответствии с
автоматизации.	продукции,		техническим заданием и
Изучение технического	управления и		нормативно-технической
задания, выбор	диагностики		документацией
оборудования и	производственного		В-ПК-1 Владеть: основными
оптимальных	оборудования.		навыками проектирования и
технических решений	Нормативная		конструирования, способами
для разработки	документация.		создания нормативно-технической
автоматизированной	Технические		документации в соответствии с
системы управления	средства		техническим заданием, соблюдая
технологическими	управления		необходимые технические,
процессами.	основного и		технологические и экологические
	вспомогательного		требования
	производства.		
	Программное,		
	информационное и		
	техническое		
	обеспечение.		

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Основы радиохимии» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (http://www.ssti.ru/education.html/Информация по образовательным программам).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.04 «Автоматизация технологических процессов и производств», образовательной программе «Автоматизация технологических процессов и производств в химико-технологической и энергетической отраслях».

Общая трудоемкость дисциплины составляет в зачетных единицах -2, 72 час., обучение по дисциплине проходит в семестре 5.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Явление радиоктивности. Химия актиноидов»
- **раздел 2** «Сокристаллизация, адсорбционные процессы и коллоидообразование в радиохимии. Электрохимические особенности в радиохимии»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблине 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час				Аттестационные мероприятия		Макс. балл
110	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
5 семе			семес	тр (18	неделі	ь)		
1	Явление радиоктивности. Химия актиноидов	10		16	9	2/ЛР1, 6/ЛР2, 8/ЛР3	9/KP1	30
2	Сокристаллизация, адсорбционные процессы и коллоидообразование в радиохимии. Электрохимические особенности в радиохимии	6		16	15	10/ЛР4, 12/ЛР5, 14/ЛР6, 16/ЛР7	16/KP2	30

Зачет					40
Итого за 5 семестр:	16	32	24		100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
— Знать: основные государственные и отраслевые стандарты, требования, предъявляемые к нормативнотехнической документации при проектировании, различные технические, технологические и экологические требования (3-ПК-1)	1, 2	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2, Зачет (5 сем.)
– Уметь: проектировать объекты профессиональной деятельности в соответствии с техническим заданием и нормативно-технической документацией (У-ПК-1)	1, 2	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2, Зачет (5 сем.)
- Владеть: основными навыками проектирования и конструирования, способами создания нормативнотехнической документации в соответствии с техническим заданием, соблюдая необходимые технические, технологические и экологические требования (В-ПК-1)	1, 2	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2, Зачет (5 сем.)
- Знать: методики сбора и обработки информации; актуальные российские и зарубежные источники информации в сфере профессиональной деятельности; метод системного анализа (3-УК-1)	1, 2	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2, Зачет (5 сем.)
– Уметь: применять методики поиска, сбора и обработки информации; осуществлять критический анализ и синтез информации, полученной из разных источников (У-УК-1)	1, 2	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2, Зачет (5 сем.)
– Владеть: методами поиска, сбора и обработки, критического анализа и синтеза информации; методикой системного подхода для решения поставленных задач (B-УК-1)	1, 2	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2, Зачет (5 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Явление радиоктивности. Химия актиноидов	
1.1 Радиоактивность. Радиоактивность. Природные и искусственные	4
радиоактивные элементы. Ядерные реакции.	
1.2 Химия актиноидов. Химия урана. Химия тория. Химия плутония.	6

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Итого по разделу 1:	10
Раздел 2 Сокристаллизация, адсорбционные процессы и коллоидообразог радиохимии. Электрохимические особенности в радиохимии	зание в
2.1 Состояние радионуклидов в ультрамалых концентрациях в жидких,	1
твердых и газообразных средах Состояние радионуклидов в	
ультрамалых концентрациях в жидких, твердых и газообразных средах.	
2.2 Сокристаллизация, адсорбционные процессы и	4
коллоидообразование в радиохимии Сокристаллизация. Выделение	
радионуклидов из растворов методами сокристаллизации и ионного обмена.	
Выделение радионуклидов из растворов методом адсорбции. Понятие об	
ионном обмене и экстракции	
2.3 Электрохимические особенности в радиохимии. Электрохимические	1
методы выделения и разделения и разделения радионуклидов.	
Итого по разделу 2:	6
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Явление радиоктивности. Химия актиноидов	
1.1 Техника работы и техника безопасности при работе с	2
радиоактивными веществами и препаратами. Техника работы и техника	
безопасности при работе с радиоактивными веществами и препаратами.	
Противопожарная безопасность. Оказание первой помощи пострадавшему.	
1.2 Методика измерения активности открытых источников	2
радиоактивного излучения. Знакомство с работой альфа-, бета-счётчиков.	
Методика измерения активности открытых источников радиоактивного	
излучения. Особенности пробоподготовки.	
1.3 Альфа-, бета-, гамма-спектрометрический комплекс ПРОГРЕСС.	8
Знакомство с работой и устройством детекторов для регистрации	
ионизирующих излучений. Идентификация радионуклидов на альфа-, бета-,	
гамма-спектрометрическом комплексе «Прогресс»	
1.4 Определение периода полураспада тория-234. Виды радиоактивного	4
распада. Скорость распада. Определение периода полураспада	
радионуклида графическим методом на основании измерения бета-	
активности проб через разные периоды времени.	
Итого по разделу 1:	16

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Сокристаллизация, адсорбционные процессы и коллоидообразов	вание в
радиохимии. Электрохимические особенности в радиохимии	
2.1 Выделение тория на адсорбционном носителе. Адсорбция. Ряд	4
распада природного урана. Бета-активность. Проведение выделения тория	
из растворов природного урана методов соосаждения на гидроксиде железа.	
2.2 Выделение продуктов распада тория. Выделение продуктов распада	4
тория-232, являющегося родоначальником ряда распада тория. Определение	
бета-активности продуктов распада.	
2.3 Ионообменное разделение урана и тория. Классификация	4
ионнообменных материалов, их строение. Механизмы ионного обмена.	
Выполнение разделения урана и тория на анионите.	
2.4 Экстракционное разделение урана и тория. Проведение	4
экстракционного разделения урана и тория при помощи трибутилфосфата.	
Определение удельной бета-активности проб.	
Итого по разделу 2:	16
Всего по лабораторному практикуму дисциплины:	32

5.4 Тематика практических / семинарских занятий

Практические/семинарские занятия в соответствии с рабочим учебным планом не предусмотрены.

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: IT-методы, Case-study, Методы проблемного обучения, Обучение на основе опыта.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Работа в команде, Case-study, Методы проблемного обучения, Опережающая самостоятельная работа, Проектный метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Работа в команде, Опережающая самостоятельная работа.

Общее число часов занятий, проводимых в интерактивной форме – 16 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ПК-1	3-ПК-1	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2,
		Зачет (5 сем.)
ПК-1	У-ПК-1	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2,
		Зачет (5 сем.)
ПК-1	В-ПК-1	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2,
		Зачет (5 сем.)
УК-1	3-УК-1	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2,
		Зачет (5 сем.)
УК-1	У-УК-1	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2,
		Зачет (5 сем.)
УК-1	В-УК-1	ЛР1, ЛР2, ЛР3, КР1, ЛР4, ЛР5, ЛР6, ЛР7, КР2,
		Зачет (5 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Зачета.

Аттестация в 5 семестре:

Вид		Максимальная	Минимальная
	Наименование видов контроля	положительная	положительная
контроля		оценка в баллах	оценка в баллах
	Текущая аттестац	ия	
ЛР1	Лабораторная работа	5	3
ЛР2	Лабораторная работа	10	6
ЛР3	Лабораторная работа	5	3
KP1	Контрольная работа	10	6
ЛР4	Лабораторная работа	5	3
ЛР5	Лабораторная работа	5	3
ЛР6	Лабораторная работа	5	3
ЛР7	Лабораторная работа	5	3
KP2	Контрольная работа	10	6
Сумма:		60	36
	Промежуточная аттест	ация	
Зачет		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	C	Ι)	E	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно

бальной шкале	(отл.)	(xop.)	(удовл.)	(неуд.)
Зачет		Зачтено	Не зачтено	

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Зачета (5 семестр):

- 1 Изотопы. Радиоактивные семейства. Закон радиоактивного распада. Радиоактивное равновесие.
 - 2 Оксиды урана. Получение и свойства.
 - 3 Спонтанное деление ядер. Цепные ядерные реакции.
 - 4 Тепловые и быстрые нейтроны. Сечение захвата нейтрона.
 - 5 Замедлители нейтронов.
 - 6 Оксиды плутония. Получение и свойства.
 - 7 Окислительные состояния урана в водном растворе. Труднорастворимые соли.
- 8 Окислительные состояния плутония в водных растворах. Реакции диспропорционирования.
 - 9 Факторы, определяющие состояние радионуклидов в растворах.
 - 10 Получение и свойства оксида и фторида тория.
 - 11 Сравнительная характеристика актиноидных и лантаноидных элементов.
 - 12 Уран. Получение. Физические и химические свойства.
 - 13 Торий. Получение. Физические и химические свойства.
 - 14 Молекулярная адсорбция. Уравнения Фрейндлиха и Ленгмюра.
- 15 Сокристаллизация. Изоморфизм. Влияние различных факторов на равновесие процесса сокристаллизации.
- 16 Равновесие ионного обмена. Константа обмена. Изотерма ионного обмена. Емкость ионитов. Факторы, влияющие на равновесие катионного и анионного обмена.
- 17 Строение ионитов. Ионогенные группы. Требования к ионитам. Техническая характеристика ионитов. Сродство ионитов к ионам.
 - 18 Правило фаз Гиббса при экстракции урана.
- 19 Экстракция. Требования к экстрагентам. Взаимосвязь строения и экстракционной способности фосфорорганических производных.
 - 20 Классификация экстрагентов по механизму экстракции.
 - 21 Электролиз, как метод выделения радионуклидов из растворов.
- 22 Электрохимические методы выделения и разделения радионуклидов (метод электромиграции).
 - 23 Разделение урана и тория-234 на адсорбционном носителе

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Давыдов Ю. П. Основы радиохимии [Текст]: учебное пособие / Ю. П. Давыдов Минск: Вышэйшая школа, 2014 317 с.
- Л1.2 Давыдов Ю. П. Основы радиохимии [Электронный ресурс] / Давыдов Ю. П. Минск: Вышэйшая школа, 2014 317 с.

8.2 Дополнительная литература

- Л2.1 Бекман И. Н. Атомная и ядерная физика: радиоактивность и ионизирующие излучения [Текст]: учебник для бакалавриата и магистратуры / И. Н. Бекман Москва: Юрайт, 2017 398 с.
- Л2.2 Бекман И. Н. Неорганическая химия. Радиоактивные элементы [Текст]: учебник для бакалавриата и магистратуры / И. Н. Бекман Москва: Юрайт, 2017 399 с.
- Л2.3 Бекман И. Н. Радиохимия в 2 т. Т. 1 фундаментальная радиохимия: Учебник и практикум для вузов / Бекман И. Н. Москва: Юрайт, 2020 473 с
- Л2.4 Бекман И. Н. Радиохимия в 2 т. Т. 2. Прикладная радиохимия и радиационная безопасность: Учебник и практикум для вузов / Бекман И. Н. Москва: Юрайт, 2020 386 с
- Л2.5 Бекман И. Н. Радиоэкология и экологическая радиохимия: Учебник для вузов / Бекман И. Н. Москва: Юрайт, 2021 497 с
- Л2.6 Бекман И. Н. Ядерные технологии [Текст]: учебник для бакалавриата и магистратуры / И. Н. Бекман Москва: Юрайт, 2017 404 с.
- Л2.7 Егоров Ю. В. Методы концентрирования и разделения радионуклидов: учебное пособие для вузов / Ю. В. Егоров, Н. Д. Бетенеков, В. Д. Пузако Москва: Юрайт, 2019 129 с.

8.3 Информационно-образовательные ресурсы

- Э1 American Chemical Society (ACS) Режим доступа: www. library. mephi. ru
- Э2 The Royal Society of Chemistry (RSC) Режим доступа: www. library. mephi. ru
- ЭЗ Известия вузов. Сер.: Химия и химическая технология Режим доступа: http://elibrary.ru/
- Э4 "Росатом" госкорпорация по атомной энергии Режим доступа: http://www.rosatom.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ http://www.ssti.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус).

Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса

- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к промежуточному контролю: Зачет (5 семестр)

В течение 5 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Зачету по дисциплине. Студент на Зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Ю.Н. Макасеев