МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Машины и аппараты химических и атомных производств»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 5 от 28.06.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МАТЕРИАЛОВЕДЕНИЕ

НАПРАВЛЕНИЕ ПОДГОТОВКИ
15.03.04 Автоматизация технологических процессов и производств
НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
Автоматизация технологических процессов и производств в химикотехнологической и энергетической отраслях

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
6	2	72	16	0	16	16	40	Зач.
Итого	2	72	16	0	16	16	40	

Аннотация

Рабочая программа дисциплины «Материаловедение» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.04 «Автоматизация технологических процессов и производств», образовательной программы «Автоматизация технологических процессов и производств в химико-технологической и энергетической отраслях».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 строение, основные свойства металлов и сплавов;
- 3.2 процесс формирования структуры материалов в результате кристаллизации;
- 3.3 механические и конструкционные свойства материалов;
- 3.4 диаграммы состояния и их связь со свойствами сплавов;
- 3.5 строение, классификацию и основные свойства железоуглеродистых сплавов;
- 3.6 теорию термической, химико-термической и термомеханической обработки стали;
- 3.7 свойства и области применения инструментальных, конструкционных, специальных сталей, цветных металлов, сплавов и наноматериалов на их основе.

2) уметь:

- У.1 использовать полученные знания для рационального выбора материалов в профессиональной деятельности;
- У.2 использовать полученные знания для анализа проблем, возникающих в связи с применением конкретных материалов

3) владеть или быть в состоянии продемонстрировать:

В.1 использования основных физико-химических методов исследования строения, свойств материалов, а также методами выбора материалов для деталей и узлов конкретного назначения

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Материаловедение» являются:

умение рационального выбора материалов в профессиональной деятельности, выработка способности анализировать проблемы, возникающие в связи с применением конкретных материалов, изучение возможностей рационального изменения структуры материалов с целью улучшения комплекса служебных характеристик

Основными задачами дисциплины являются:

- изучение физической сущности явлений, происходящих в материалах при воздействии на них различных факторов в условиях их производства и эксплуатации и оценка их влияния на структуру и свойства материалов
- установить зависимость между составом, строением и свойствами материалов, изучить теорию и практику различных способов упрочнения материалов, обеспечивающих высокую надежность и долговечность деталей машин, инструмента и других изделий.
- изучить основные группы металлических и неметаллических материалов, их свойства и области применения.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Материаловедение» (Б1.Б.3.4) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен применять	3-ОПК-1 Знать: методы математического анализа и
естественнонаучные и общеинженерные	моделирования в профессиональной деятельности
знания, методы математического анализа и	У-ОПК-1 Уметь: применять методы математического анализа и
моделирования в профессиональной	моделирования для решения поставленных задач
деятельности	В-ОПК-1 Владеть: методами математического анализа и
	моделирования для решения поставленных задач
УК-2 Способен определять круг задач в	3-УК-2 Знать: виды ресурсов и ограничений для решения
рамках поставленной цели и выбирать	профессиональных задач; основные методы оценки разных
оптимальные способы их решения, исходя из	способов решения задач; действующее законодательство и
действующих правовых норм, имеющихся	правовые нормы, регулирующие профессиональную
ресурсов и ограничений	деятельность
	У-УК-2 Уметь: проводить анализ поставленной цели и
	формулировать задачи, которые необходимо решить для ее
	достижения; анализировать альтернативные варианты решений
	для достижения намеченных результатов; использовать
	нормативно-правовую документацию в сфере профессиональной
	деятельности
	В-УК-2 Владеть: методиками разработки цели и задач проекта;
	методами оценки потребности в ресурсах, продолжительности и
	стоимости проекта, навыками работы с нормативно-правовой
	документацией

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Материаловедение» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (http://www.ssti.ru/education.html/Информация по образовательным программам).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.04 «Автоматизация технологических процессов и производств», образовательной программе «Автоматизация технологических процессов и производств в химико-технологической и энергетической отраслях».

Общая трудоемкость дисциплины составляет в зачетных единицах -2, 72 час., обучение по дисциплине проходит в семестре 6.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Теория сплавов»
- раздел 2 «Железоуглеродистые сплавы»
- раздел 3 «Термическая и химико-термическая обработка сталей»

- раздел 4 «. Конструкционные, инструментальные и специальные стали»
- раздел 5 «Цветные металлы и сплавы»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№ Наименование раздела		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час				Аттестационные ме	Макс. балл		
145	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел	
	6 семестр (16 недель)								
1	Теория сплавов	5		6	7	2/ЛР1, 4/ЛР2, 6/ЛР3		15	
2	Железоуглеродистые сплавы	3		2	8	8/ЛР4		10	
3	Термическая и химико-термическая обработка сталей	2		2	6	10/ЛР5		10	
4	. Конструкционные, инструментальные и специальные стали	4		2	9	12/ЛР6		5	
5	Цветные металлы и сплавы	2		4	10	16/ЛР7	16/KP1	20	
	Зачет							40	
Итог	го за 6 семестр:	16		16	40			100	

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- Знать: методы математического анализа и моделирования в профессиональной деятельности (3-ОПК-1)	1, 2, 3, 4, 5	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6 сем.)
 Уметь: применять методы математического анализа и моделирования для решения поставленных задач (У-ОПК-1) 	1, 2, 3, 4, 5	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6 сем.)
– Владеть: методами математического анализа и моделирования для решения поставленных задач (B - ОПК-1)	1, 2, 3, 4, 5	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7

— Знать: виды ресурсов и ограничений для решения профессиональных задач; основные методы оценки разных способов решения задач; действующее законодательство и правовые нормы, регулирующие профессиональную деятельность (3-УК-2)	1, 2, 3, 4, 5	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6 сем.)
– Уметь: проводить анализ поставленной цели и формулировать задачи, которые необходимо решить для ее достижения; анализировать альтернативные варианты решений для достижения намеченных результатов; использовать нормативно-правовую документацию в сфере профессиональной деятельности (У-УК-2)	1, 2, 3, 4, 5	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6 сем.)
– Владеть: методиками разработки цели и задач проекта; методами оценки потребности в ресурсах, продолжительности и стоимости проекта, навыками работы с нормативно-правовой документацией (B-УК-2)	1, 2, 3, 4, 5	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, Зачет (6 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Теория сплавов	
1.1 Строение и кристаллизация металлов. Кристаллическое строение	1.5
металлов.Полиморфные и магнитные превращения в метал-	
лах.Кристаллизация металлов.Строение слитка	
1.2 Механические и конструкционные свойства материалов	1.5
Физическая природа деформации металлов. Природа пластической	
деформации. Дислокационный механизм пластической деформа-	
ции. Разрушение металлов. Механические свойства и способы определения	
их количественных характеристик	
1.3 Диаграммы состояния сплавов. Понятия о диаграммах состояния	2
двойных и трой-ных систем. Диаграмма состояния сплавов с	
неограниченной растворимостью компонентов в твердом	
состоянии. Диаграмма состояния сплавов практически с отсут-ствием	
растворимости компонентов в твердом со-стоянии. Диаграмма состояния	
сплавов с ограниченной рас-творимостью компонентов в твердом	
состоянии. Диаграмма состояния сплавов с образованием хи-мических	
соединений. Диаграммы состояния сплавов, испытывающих пре-вращения в	
твердом состоянии. Связь между свойствами сплавов и типом диаграм-мы	
состояния (закон Курнакова).	
Итого по разделу 1:	5
Раздел 2 Железоуглеродистые сплавы	
2.1 Диаграмма состояния железо-цементит. Компоненты и фазы в сплавах	1
железа с углеродом. Диаграмма состояния железо-цементит. Диаграмма	
состояния железо-графит. Фазы в легированных сталях	

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
2.2 Классификация и свойства углеродистых сталей. Классификация сталей по структуре и назначе-нию.Свойства и маркировка углеродистых сталей	1
2.3 Классификация и свойства чугунов. Классификация серых чугунов по форме металли-ческой основе и графитных включений. Свойства и маркировка чугунов	1
Итого по разделу 2:	3
Раздел 3 Термическая и химико-термическая обработка сталей	
3.1 Термическая обработка сталей. Отжиг. Нормализация. Закалка. Отпуск. Старение. Обработка холодом	1
3.2 Химико-термическая обработка сталей Цементация. Азотирование. Цианирование и нитроцементация. Диффузионная металлизация	1
Итого по разделу 3:	2
Раздел 4 . Конструкционные, инструментальные и специальные стали	
4.1 Конструкционные стали. Классификация и маркировка легированных ста-лей. Цементуемые и улучшаемые стали. Высокопрочные стали. Пружинно-рессорные стали. Шарикоподшипниковые стали. Износостойкие стали. Строительные стали. Автоматные стали	1
4.2 Инструментальные стали. Стали для режущих инструментов. Быстрорежущие стали. Стали для измерительных инструментов. Штамповые стали	1
4.3 Коррозионностойкие стали и сплавы. Механизм коррозии металлов. Аустенитные коррозионностойкие стали. Аустенитно-ферритные коррозионностойкие стали. Аустенитно-мартенситные коррозионностойкие стали. Ферритные коррозионностойкие стали. Мартенситные коррозионностойкие стали. Коррозионно-стойкие покрытия.	1
4.4 Жаростойкие и жаропрочные стали и сплавы Жаростойкость сплавов. Жаропрочные сплавы на основе цветных метал-лов. Перлитные жаропрочные стали. Мартенситные жаропрочные стали. Аустенитные жаропрочные стали. Жаропрочные никелевые сплавы. Тугоплавкие металлы и сплавы. Неметаллические жаропрочные материалы	1
Итого по разделу 4:	4
Раздел 5 Цветные металлы и сплавы	
5.1 Медь и медные сплавы. Свойства и применение меди.Свойства и применение латуней и бронз.	1
5.2 Алюминий и его сплавы. Свойства и применение алюминия. Деформируемые, литейные и порошковые алюми-ниевые сплавы.	1
алюминия. деформируемые, литеиные и порошковые алюми-ниевые сплавы. Итого по разделу 5:	2
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Теория сплавов	
1.1 Изучение строения и свойств сплавов.	2
1.2 Определение статических характеристик материалов.	2
1.3 Диаграммы состояния сплавов.	2
Итого по разделу 1:	6
Раздел 2 Железоуглеродистые сплавы	
2.1 Диаграмма состояния железо-цементит Изучение структуры	2
железоуглеродистых сплавов. Изучение микро-структуры чугунов.	
Итого по разделу 2:	2
Раздел 3 Термическая и химико-термическая обработка сталей	
3.1 Исследование влияния термической обработки на микроструктуру и	2
механические свойства углеродистых сталей.	
Итого по разделу 3:	2
Раздел 4. Конструкционные, инструментальные и специальные стали	
4.1 Конструкционные стали. Инструментальные стали.	2
Итого по разделу 4:	2
Раздел 5 Цветные металлы и сплавы	
5.1 Изучение микроструктур и свойств цветных сплавов (медные	4
сплавы и алюминиевые сплавы). Маркировка ста-лей и цветных	
сплавов.	
Итого по разделу 5:	4
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Практические/семинарские занятия в соответствии с рабочим учебным планом не предусмотрены.

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: IT-методы, Case-study.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Поисковый метод, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Опережающая самостоятельная работа.

Общее число часов занятий, проводимых в интерактивной форме – 16 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и о	ħο	рмами	конт	роля и	ſX	освоения:
связь между формирусмыми компетенциями и	ν	pinanii	ICOILI	POSINI	121	ocbociiin.

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-1	3-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6
		сем.)
ОПК-1	У-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6
		сем.)
ОПК-1	В-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7
УК-2	3-УК-2	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6
		сем.)
УК-2	У-УК-2	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Зачет (6
		сем.)
УК-2	В-УК-2	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, Зачет (6 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Зачета.

Аттестация в 6 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах
	Текущая аттестац	ия	
ЛР1	Лабораторная работа	5	3
ЛР2	Лабораторная работа	5	3
ЛР3	Лабораторная работа	5	3
ЛР4	Лабораторная работа	10	6
ЛР5	Лабораторная работа	10	6
ЛР6	Лабораторная работа	5	3
ЛР7	Лабораторная работа	10	6
KP1	Контрольная работа	10	6
	Сумма:	60	36
	Промежуточная аттест	ация	
Зачет		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по	100-90	89–85	84–75	74–70	69–65	64–60	ниже 60

дисциплине							
Оценка (ECTS)	A	В	C	Ι)	E	F
Оценка по 4-х	отлично	хорошо			удовлетворительно		неудовлетворительно
бальной шкале	(отл.)	(xop.)			(удовл.)		(неуд.)
Зачет	Зачтено						Не зачтено

Оценка *«отмично»* выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Зачета (6 семестр):

- 1 Что такое элементарная кристаллическая ячейка (решетка), основные типы кристаллических решеток?
 - 2 Назовите виды взаимодействия компонентов в сплавах при их кристаллизации?
 - 3 Какое условие необходимо для протекания процесса кристаллизации?
 - 4 Чем отличается гомогенное образование зародышей от гетерогенного?
 - 5 Как получить мелкое зерно в литом металле?
- 6 Что такое полиморфное превращение, какие необходимы условия для его протекания?
 - 7 Что такое твердый раствор? Какие виды твердых растворов вы знаете?
 - 8 Каковы условия полной взаимной растворимости двух компонентов?
 - 9 Какие существуют типы диаграмм двухкомпонентных систем?
- 10 Что такое эвтектика и перитектика? Опишите процесс кристаллизации эвтектики и перитектики.
 - 11 Расскажите правило фаз и правило отрезков.
 - 12 Какова связь свойств сплавов с типом диаграмм состояния?
- 13 Какие существуют виды и порядок испытаний для определения прочностных характеристик и твердости металлов, их показатели и размерности?
- 14 Чем можно объяснить большую растворимость углерода в γ -железе по сравнению с α -железом?
 - 15 Какие фазы образуются в системе Fe–Fe3C и Fe–C?
- 16 Начертите диаграмму состояния Fe–Fe3C. Покажите на этой диаграмме линии ликвидуса и солидуса. Объясните линии первичной и вторичной кристаллизации. Какие при этом происходят превращения?
- 17 Постройте кривые охлаждения для доэвтектоидной и заэвтектоидной стали и для доэвтектического чугуна.
- 18 Как структурный и фазовый состав стали и чугуна зависят от содержания углерода и температуры?
 - 19 Как влияет углерод на механические свойства стали и чугуна?
- 20 Какие формы графита существуют в чугунах? Как влияет графит на механические свойства чугуна?

- 21 Какие фазы образуют легирующие элементы в стали?
- 22 Основные виды термической обработки стали, их характеристика.
- 23 В чем сущность превращений, протекающих в стали при нагреве?
- 24 Охарактеризуйте превращение аустенита при охлаждении стали и стадии этих превращений.
 - 25 Охарактеризуйте превращение при нагреве закаленной стали.
 - 26 Назовите виды отжига, области их применения.
 - 27 Назовите виды закалки, области ее применения.
 - 28 В чем сущность упрочнения стали при легировании?
- 29 Приведите классификацию легированных сталей по назначению и содержанию легирующих элементов.
- 30 Легированные конструкционные стали. Классификация, структура, свойства, маркировка, назначение.
- 31 Пружинно-рессорные и шарикоподшипниковые стали. Химический состав, свойства, маркировка, применение.
 - 32 Инструментальные стали. Химический состав, свойства, маркировка, применение.
 - 33 Твердые сплавы. Химический состав, свойства, маркировка, применение.
 - 34 Жаропрочные сплавы. Химический состав, свойства, маркировка, применение.
 - 35 Жаростойкие стали. Химический состав, свойства, маркировка, применение.
- 36 Коррозионно-стойкие стали. Химический состав, свойства, маркировка, применение.
 - 37 Приведите характеристику свойств алюминия.
- 38 Назовите виды деформируемых и литейных алюминиевых сплавов, их свойства и области применения.
- 39 Какие вы знаете деформируемые и литейные магниевые сплавы, их свойства и области применения?
- 40 Приведите характеристику латуней и бронз, их виды, маркировка, свойства и области применения.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Сапунов С. В. Материаловедение [Электронный ресурс] / Сапунов С. В. Санкт-Петербург: Лань, 2021 208 с.
- Л1.2 Фетисов Г. П. Материаловедение и технология материалов в 2 ч. Часть 1: Учебник для вузов / под ред. Фетисова Г.П. Москва: Юрайт, 2020 406 с
- Π 1.3 Фетисов Г. П. Материаловедение и технология материалов в 2 ч. Часть 2: Учебник для вузов / отв. ред. Фетисов Г. П. Москва: Юрайт, 2020 410 с
- Л1.4 Физическое материаловедение: в 7 томах / Министерство образования и науки РФ, Национальный исследовательский ядерный университет "МИФИ"; под ред. Б. А. Калина М.: Изд-во НИЯУ МИФИ, 2012Т. 2: Основы материаловедения: Т. 2: Основы материаловедения / Г. Н. Елманов [и др.] 602, [1] с.

8.2 Дополнительная литература

- Л2.1 Арабов М. Ш. Материаловедение и технология конструкционных материалов. Лабораторный практикум [Электронный ресурс] / Арабов М. Ш., Арабова З. М. Санкт-Петербург: Лань, 2021 160 с.
- Л2.2 Давыдов С. В. Материаловедение и технология конструкционных материалов : учебное пособие / С. В. Давыдов, Р. А. Богданов Москва: Инфра-Инженерия, 2020 256 с.
- Л2.3 Солнцев С. С. Защитные покрытия металлов при нагреве [Текст]: справочное пособие / С. С. Солнцев М.: Книжный дом "Либроком", 2009 238, [8] с.

- Π 2.4 Электротехнические и конструкционные материалы: Учебное пособие / В. Н. Бородулин, А. С. Воробьев, В. М. Матюнин и др.; Под ред. В. А. Филикова М.: Мастерство, 2001 280 с.
- Л2.5 Алеутдинова М. И. Определение статических характеристик металла по методу Бринелля и методу Роквелла [Электронный ресурс]: руководство к лабораторной работе / М. И. Алеутдинова; Министерство образования и науки РФ, Национальный исследовательский ядерный университет "МИФИ", Северский технологический институт филиал НИЯУ МИФИ (СТИ НИЯУ МИФИ) Северск: Изд-во СТИ НИЯУ МИФИ, 2017 20 с.

8.3 Информационно-образовательные ресурсы

- Э1 Операционная система WINDOWS XP, интегрированный пакет офисных приложений MS Office 2003 (приложения Word, Excel, PowerPoint, Visio). Работа осуществляется в локальной сети института, работающей под управлением сетевой операционной системы Novell NetWare 4. Работа во внешней сети Интернет осуществляется из учебных аудито-рий вуза посредством выделенной линии со скоростью 2 Мбит/с (в пределах региональной сети -до 1 Гбит/с).
 - Э2 Рекомендуемые Интернет-ресурсы для организации самостоятельной работы:
 - Э3 http://naukaran.ru сборник статей по материаловедению;
 - Э4 http://bibliofond.ru/ лекции по материаловедению;
 - Э5 http://lomonosov-fund.ru лекции по материаловедению;
 - Э6 http://nanometer.ru открытый видеоархив лекций;
- Э7 http://library.mephi.ru Распределенный сводный каталог библиотек институтов НИЯУ МИФИ;
- Э8 http://elibrary.ru Научная электронная библиотека. Научная электронная библиоте-ка eLIBRARY.RU это крупнейший российский информационный портал в области нау-ки, технологии, медицины и образования, содержащий рефераты и полные тексты более 12 млн научных статей и публикаций. На платформе eLIBRARY.RU доступны электрон-ные версии более 1400 российских научно-технических журналов, в том числе более 500 журналов в открытом доступе.
- Э9 Сведения об обеспеченности дисциплины основной и дополнительной литературой приведены в приложении 8.

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ http://www.ssti.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к промежуточному контролю: Зачет (6 семестр)

В течение 6 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Зачету по дисциплине. Студент на Зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): М.И. Алеутдинова