МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Химии и технологии материалов современной энергетики»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 5 от 28.06.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ РАДИОХИМИЯ (СПЕЦГЛАВЫ)

НАПРАВЛЕНИЕ ПОДГОТОВКИ **14.04.02 Ядерные физика и технологии**НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ **Ядерные энерготехнологии нового поколения**

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
3	5	180	16	32	32	0	100	Экз.
Итого	5	180	16	32	32	0	100	

Аннотация

Рабочая программа дисциплины «Радиохимия (спецглавы)» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 14.04.02 «Ядерные физика и технологии», образовательной программы «Ядерные энерготехнологии нового поколения».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основные законы, закономерности, механизмы и области применения методов выделения и разделения радионуклидов (хроматография, экстракция, радиолиз водных и неводных растворов);
 - 3.2 химию "горячих" атомов.

2) уметь:

- У.1 самостоятельно делать выбор средств детектирования любых радионуклидов;
- У.2 понимать и объяснять особенности физико-химического поведения радионуклидов в технологических системах, включая процессы, происходящие в ядерных реакторах;
- У.3 понимать и объяснять основные закономерности межфазного распределения радионуклидов и особенностей процесса изотопного обмена.

3) владеть или быть в состоянии продемонстрировать:

- В.1 навыками проведения радиометрических измерений;
- В.2 навыками обработки, анализа и осмысления результатов радиохимического выделения элементов и их радиометрического измерения;
- В.3 методами синтеза меченных соединений и их применением в науке и промышленности;
 - В.4 навыками представления итогов измерений в виде отчетов и публикаций.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Радиохимия (спецглавы)» являются:

изучение особенностей поведения радиоактивных изотопов, выделения и разделения их методами хроматографии и экстракции, радиолиза водных и неводных растворов, а также вопросов синтеза меченных соединений и применения радиоактивных изотопов в науке и промышленности.

Основными задачами дисциплины являются:

расширение знаний, полученных магистрантами в курсе радиохимия, освоение ими теоретических знаний в области специальных разделов радиохимии и привитие им навыков работы с радиоактивными веществами.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Радиохимия (спецглавы)» (Б1.В.ДВ.2.2) - Общенаучный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-2 Способен применять современные	3-ОПК-2 Знать: современные методы исследования, оценивать и
методы исследования, оценивать и	представлять результаты выполненной работы;
представлять результаты выполненной работы	У-ОПК-2 Уметь: применять современные методы исследования,
	оценивать и представлять результаты выполненной работы
	В-ОПК-2 Владеть: навыками применения современных методов
	исследования, оценивать и представлять результаты
	выполненной работы

4 Воспитательный потенциал учебной дисциплины

Формирование воспитательного потенциала по данным образовательным программам не предусмотрено рабочей программой воспитания в Северском технологическом институте – филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ».

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения **«очная»** по направлению 14.04.02 «Ядерные физика и технологии», образовательной программе «Ядерные энерготехнологии нового поколения».

Общая трудоемкость дисциплины составляет в зачетных единицах - 5, 180 час., обучение по дисциплине проходит в семестре 3.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Экстракционные и хроматографические методы выделения и разделения радионуклидов. Радиолиз растворов»
 - раздел 2 «Получение и применение радиоактивных изотопов»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№ Наименование раздела		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час				Аттестационные ме	Макс. балл	
110	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
		3	семес	тр (18	недел	ь)		
1	Экстракционные и хроматографические методы выделения и разделения	10	16	16	33	4/ЛР1, 8/ЛР2, 2/Дск1, 5/Дск2, 8/Дск3	8/KP1	30

	радионуклидов. Радиолиз растворов							
2	Получение и применение	6	16	16	31	11/ЛР3, 15/ЛР4,	16/KP2	30
	радиоактивных изотопов					12/Дск4, 14/Дск5, 16/Дск6		
	Экзамен				36	тогдеко		40
Итого за 3 семестр:		16	32	32	100			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения компетенции	Номера разделов	Аттестационные мероприятия
- Знать: современные методы исследования, оценивать и представлять результаты выполненной работы; (3-ОПК-2)	1, 2	КР1, КР2, Экзамен (3 сем.)
– Уметь: применять современные методы исследования, оценивать и представлять результаты выполненной работы (У-ОПК-2)	1, 2	Дск1, Дск2, Дск3, КР1, Дск4, Дск5, Дск6, КР2, Экзамен (3 сем.)
– Владеть: навыками применения современных методов исследования, оценивать и представлять результаты выполненной работы (B-OПК-2)	1, 2	ЛР1, ЛР2, КР1, ЛР3, ЛР4, КР2, Экзамен (3 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Экстракционные и хроматографические методы выделения и ра	зделения
радионуклидов. Радиолиз растворов	
1.1 Разделение радионуклидов методом хроматографии.	4
1.2 Экстракционный метод выделения и разделения радионуклидов.	4
1.3 Радиолиз водных и неводных растворов.	2
Итого по разделу 1:	10
Раздел 2 Получение и применение радиоактивных изотопов	
2.1 Методы получения радиоактивных изотопов.	2
2.2 Изотопный обмен.	2
2.3 Применение радиоактивных изотопов.	2
Итого по разделу 2:	6
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Экстракционные и хроматографические методы выделения и ра	зделения
радионуклидов. Радиолиз растворов	
1.1 Построение изотермы сорбции урана.	8
1.2 Построение изотермы экстракции урана.	8
Итого по разделу 1:	16
Раздел 2 Получение и применение радиоактивных изотопов	
2.1 Измерение объемной активности изотопов тория (228, 230, 232) в	8
природных водах альфа-спектрометрическим методом.	
2.2 Измерение объемной активности изотопов урана (234, 238) в	8
природных водах альфа-спектрометрическим методом с	
радиохимической подготовкой.	
Итого по разделу 2:	16
Всего по лабораторному практикуму дисциплины:	32

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Экстракционные и хроматографические методы выделения и ра	зделения
радионуклидов. Радиолиз растворов	
1.1 Техника работы и техника безопасности при работе с	4
радиоактивными веществами и препаратами. Ознакомление с	
радиометрическими установками. Определение полной обменной	
емкости ионита и константы Никольского.	
1.2 Ионообменное разделение урана и тория.	6
1.3 Экстракционное разделение урана и тория.	6
Итого по разделу 1:	16
Раздел 2 Получение и применение радиоактивных изотопов	
2.1 Получение изотопов с использованием реактора ИРТ-Т.	8
2.2 Получение изотопов на циклотроне.	4
2.3 Устройство бетатрона и области его применения.	4
Итого по разделу 2:	16
Всего по практическим / семинарским занятиям дисциплины:	32

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: IT-методы, Case-study, Методы проблемного обучения, Обучение на основе опыта.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Работа в команде, Case-study, Методы проблемного обучения, Опережающая самостоятельная работа, Проектный метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Работа в команде, Опережающая самостоятельная работа.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-2	3-ОПК-2	КР1, КР2, Экзамен (3 сем.)
ОПК-2	У-ОПК-2	Дек1, Дек2, Дек3, КР1, Дек4, Дек5, Дек6, КР2,
		Экзамен (3 сем.)
ОПК-2	В-ОПК-2	ЛР1, ЛР2, КР1, ЛР3, ЛР4, КР2, Экзамен (3 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 3 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах
	Текущая аттестац	·	
ЛР1	Лабораторная работа	5	3
ЛР2	Лабораторная работа	5	3
Дск1	Дискуссия	3	1.8

Дск2	Дискуссия	3	1.8
Дск3	Дискуссия	4	2.4
KP1	Контрольная работа	10	6
ЛР3	Лабораторная работа	5	3
ЛР4	Лабораторная работа	5	3
Дск4	Дискуссия	3	1.8
Дск5	Дискуссия	4	2.4
Дск6	Дискуссия	3	1.8
KP2	Контрольная работа	10	6
	Сумма:	60	36
	Промежуточная аттест	ация	
Экзамен		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	С	Ι)	Е	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)	(xop.)			(удс	вл.)	(неуд.)
Зачет				Не зачтено			

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка *«удовлетворительно»* выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (3 семестр):

- 1 Равновесие ионного обмена. Константа обмена. Изотерма ионного обмена. Емкость ионитов. Факторы, влияющие на равновесие катионного и анионного обмена.
 - 2 Способы получения изотопов.
- 3 Строение ионитов. Ионогенные группы. Требования к ионитам. Техническая характеристика ионитов. Сродство ионитов к ионам.
 - 4 Правило фаз Гиббса при экстракции урана.
- 5 Экстракция. Требования к экстрагентам. Взаимосвязь строения и экстракционной способности фосфорорганических производных.
 - 6 Классификация экстрагентов по механизму экстракции.
- 7 Равновесие процесса экстракции урана нейтральными экстрагентами (изотерма экстракции, константа экстракции, коэффициенты распределения и разделения). Влияние состава водной фазы, разбавителя и температуры на коэффициент распределения урана.
 - 8 Разделение урана и тория на ионитах.

- 9 Хроматографический метод разделения веществ. Классификация. Ионообменная хроматография.
 - 10 Экстракция аминами.
 - 11 Выделение актиния из продуктов распада тория-232.
 - 12 Синергетический эффект. Применение.
 - 13 Экстракция кислыми алкилфосфатами.
 - 14 От чего зависит способность ионов и ионитов к обмену?
 - 15 Классификация ионитов по Никольскому.
- 16 Ядерные реакции, осуществляемые с помощью ядерных реакторов и ускорителей заряженных частиц.
- 17 Строение и основные характеристики ионитов. Селективность катионитов и анионитов по отношению к урану.
- 18 Требования к экстрагентам. Влияние строения нейтральных экстрагентов в ряду: алкилфосфат, алкилфосфонат, алкилфосфинат, алкилфосфиноксид на коэффициенты распределения урана.
- 19 Хроматографический метод разделения Вk и Cf на ионите КУ-2 с использованием комплексообразователя.
- 20 Определение константы равновесия гетерогенного процесса MeS + H2 = Me + H2S методом радиоактивных индикаторов.
 - 21 Разделение урана и плутония экстракционным способом.
 - 22 Изотопный обмен. Константа равновесия, коэффициент обмена и степень обмена.
- 23 Исследование равноценности химической связи в молекуле обмена и степень обмена.
- 24 Исследование равноценности химической связи в молекуле методом радиоактивных индикаторов.
 - 25 Разделение урана и тория экстракционным способом.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Бекман И. Н. Неорганическая химия. Радиоактивные элементы [Текст]: учебник для бакалавриата и магистратуры / И. Н. Бекман Москва: Юрайт, 2017 399 с.
- Л1.2 Пучкова Е. В. Ядерная химия. Избранные главы [Электронный ресурс] / Пучкова Е. В. Санкт-Петербург: Лань, 2021 192 с.

8.2 Дополнительная литература

- Л2.1 Бекман И. Н. Радиохимия [Текст]: учебник и практикум для академического бакалавриата / И. Н. Бекман; Московский государственный университет им. М.В. Ломоносова М.: Юрайт, 2014Т. 1: Фундаментальная радиохимия: Т. 1: Фундаментальная радиохимия; Текст 472, [2] с.
- Л2.2 Бекман И. Н. Радиохимия [Текст]: учебник и практикум для академического бакалавриата / И. Н. Бекман; Московский государственный университет им. М.В. Ломоносова М.: Юрайт, 2014Т. 2: Прикладная радиохимия и радиационная безопасность: Т. 2: Прикладная радиохимия и радиационная безопасность; Текст 386, [2] с.
- $\Pi 2.3$ Громов Б. В. Введение в химическую технологию урана: учебник для вузов / Б. В. Громов М.: Атомиздат, 1978 336 с.
- Л2.4 Нефедов В. Д. Радиохимия: учебное пособие для вузов / В. Д. Нефедов, Е. Н. Текстер, М. А. Торопова М.: Высшая школа, 1987 272 с.
 - Л2.5 Радиохимия: [журнал] / Российская Академия наук СПб.: Наука, 2011-

8.3 Информационно-образовательные ресурсы

- Э1 American Chemical Society (ACS) Режим доступа: www. library. mephi. ru
- Э2 The Royal Society of Chemistry (RSC) Режим доступа: www. library. mephi. ru
- ЭЗ Известия вузов. Сер.: Химия и химическая технология Режим доступа: http://elibrary. ru/
- Э4 "Росатом" госкорпорация по атомной энергии Режим доступа: http://www.rosatom.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ http://www.ssti.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода профессиональной деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается

находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к практическим занятиям, семинарам
- Подготовка к экзамену
- Подготовка к промежуточному контролю: Экзамен (3 семестр)

В течение 3 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю – Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически

стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Ю.Н. Макасеев, А.В. Муслимова