МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 5 от 28.06.2023

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ЭЛЕКТРОННАЯ И МИКРОПРОЦЕССОРНАЯ ТЕХНИКА

НАПРАВЛЕНИЕ ПОДГОТОВКИ
13.03.02 Электроэнергетика и электротехника
НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ
Электроснабжение

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
5	4	144	32	16	16	32	80	Диф3
Итого	4	144	32	16	16	32	80	

Аннотация

Рабочая программа дисциплины «Электронная и микропроцессорная техника» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 13.03.02 «Электроэнергетика и электротехника», образовательной программы «Электроснабжение».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основные термины и определения, используемые в аналоговой и цифровой электронике;
- 3.2 характеристики, параметры и линейные модели основных компонентов аналоговой электроники;
- 3.3 устройство типовых схем, методы и алгоритмы анализа и синтеза простых аналоговых и цифровых схем;

2) уметь:

- У.1 узнавать схемы аналоговой и цифровой электроники, а также требуемые для анализа схемы виды параметров и характеристик и;
- У.2 определять виды обратных связей и прогнозировать изменение характеристик и параметров усилителей;
- У.3 рассчитывать параметры и характеристики схем для режима малого сигнала в заданной системе ограничений;

3) владеть или быть в состоянии продемонстрировать:

- В.1 опытом исследования типовых схем аналоговой и цифровой электроники;
- В.2 опытом выбора и расчета рабочих режимов полупроводниковых приборов;
- В.3 опытом работы со специализированной справочной литературой и нормативнотехническими материалами.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Электронная и микропроцессорная техника» являются:

теоретическая и практическая подготовка студентов в области электронной техники в виде формирования у них знаний и умений анализа, синтеза и исследования типовых и относительно несложных электронных схем, используемых в приборостроении, а также выработки положительной мотивации к самостоятельной работе и самообразованию.

Основными задачами дисциплины являются:

- овладеть методиками синтеза электронных и микропроцессорных схем;
- дать информацию об основных характеристиках микропроцессорных устройств;
- познакомить с методами анализа режимов работы электронных и микропроцессорных схем.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Электронная и микропроцессорная техника» (Б1.Б.3.14) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-3 Способен применять соответствующий физико-математический аппарат, методы анализа и моделирования, теоретического и экспериментального исследования при решении профессиональных задач	3-ОПК-3 Знать: основные математические приложения и физические законы, явления и процессы, на которых основаны принципы действия объектов профессиональной деятельности, а также аппарат теоретического и экспериментального исследования У-ОПК-3 Уметь: применять основные законы математики, физики и технических наук при моделировании технологических процессов В-ОПК-3 Владеть: математическим аппаратом, методами теоретического и экспериментального исследования при
	решении профессиональных задач

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Электронная и микропроцессорная техника» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (http://www.ssti.ru/education.html/Информация по образовательным программам).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 13.03.02 «Электроэнергетика и электротехника», образовательной программе «Электроснабжение».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **4**, **144 час.**, обучение по дисциплине проходит в **семестре 5**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Электронная техника»
- раздел 2 «Микропроцессорная техника»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

NG	Ш	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час				Аттестационные ме	Макс. балл		
JNō	№ Наименование раздела		Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел	
		5	семес	тр (18	недел	ь)			
1	Электронная техника	9	4	2	18	2/ЛР1, 3/3д1	5/T1	12	
2	Микропроцессорная техника	23	12	14	62	4/ЛР2, 8/ЛР3, 14/ЛР4, 16/ЛР5, 5/3д2, 9/3д3, 15/3д4	16/KP1, 16/T2	48	
	Дифференцированный зач	ет						40	
Итог	го за 5 семестр:	32	16	16	80			100	

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- Знать: основные математические приложения и физические законы, явления и процессы, на которых основаны принципы действия объектов профессиональной деятельности, а также аппарат теоретического и экспериментального исследования (3-ОПК-3)	1, 2	ЛР1, Зд1, Т1, ЛР2, ЛР3, ЛР4, ЛР5, Зд2, Зд3, Зд4, КР1, Т2, Зачет (5 сем.)
– Уметь: применять основные законы математики, физики и технических наук при моделировании технологических процессов (У-ОПК-3)	1, 2	3д1, Т1, ЛР2, ЛР3, ЛР4, ЛР5, Зд2, Зд3, Зд4, КР1, Т2, Зачет (5 сем.)
– Владеть: математическим аппаратом, методами теоретического и экспериментального исследования при решении профессиональных задач (В-ОПК-3)	1, 2	ЛР1, Зд1, Т1, ЛР4, Зд2, Зд3, Зд4, КР1, Т2, Зачет (5 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Электронная техника	
1.1 Вводная лекция. Функциональная и элементарная структура	2
электронных устройств Виды сигналов и способы их преобразования;	
функциональные блоки электронных устройств; элементарный состав	
функциональных блоков	
1.2 Усилители электрических сигналов. 1. Основные параметры и	2
характеристики усилителей; 2. Транзисторные усилители; 3. Интегральные	
операционные усилители; 4. Усилители мощности	
1.3 Частотные фильтры и генераторы электрических сигналов.	2
1.4 Элементарная база компонентов аналоговых и цифровых устройств.	3
Пассивные элементы электронных схем; принципы работы и	
характеристики особенности полупроводниковых приборов (диоды,	
биполярные/полевые транзисторы)	
Итого по разделу 1:	9
Раздел 2 Микропроцессорная техника	
2.1 Основы цифровой электроники Общие сведения о логических	2
устройствах (последовательные / параллельные, комбинационные /	_
последовательностные); элементарные логические функции	
2.2 Особенности схемного построения логических элементов. Виды	2
схемного выполнения каскадов (ТТЛ, ТТЛШ, МОП, КМОП, ЭСЛ, И2Л);	_
характеристики, параметры, достоинства и недостатки различных видов	
схемного выполнения логических элементов.	
2.3 Комбинационные логические устройства. Шифраторы /	2
дешифраторы; мультиплексоры / демультиплексоры; сумматоры	_
2.4 Последовательностные логические устройства. Триггеры (RS, JK, T,	4
D); счетчики импульсов (двоичные, двоично-десятичные, реверсивные);	
регистры (хранения, сдвига, универсальные)	
2.5 Запоминающие устройства. Интегральные ОЗУ; ПЗУ;	2
программируемые ПЗУ	
2.6 Элементы и узлы АЦП и ЦАП. Рассматриваются основные схемные	2
решения аналого-цифровых и цифро-аналоговых преобразователей, их	2
особенности и принцип работы.	
2.7 Микропроцессорные системы. Архитектура простейшей цифровой	4
ЭВМ, структура МС с ПЗУ и ОЗУ, интерфейсы ввода / вывода, методы	7
синхронизации передачи данных; детектирование ошибок при передаче	
информации; системный интерфейс; структура элементарного	
микропроцессора	
2.8 Интерфейсы связи. Классификация, конструкция и принципы работы	1
интерфейсов связи (RS-232, RS-485, CAN, Ethernet)	1
2.9 Применение микропроцессорных устройств для нужд энергетики.	4
Принципы построения МП устройств для нужд энергетики; цифровые	
измерительные и испытательные устройства; цифровые приборы учета	
электрической энергии; МП-устройства РЗиА	
Итого по разделу 2:	23
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Электронная техника	
1.1 Исследование устройств на основе операционных усилителей.	2
Исследование компараторов, усилителей постоянного тока, генераторов и	
автоколебательных контуров	
Итого по разделу 1:	2
Раздел 2 Микропроцессорная техника	
2.1 Исследование логических элементов и схем. 1. Исследование работы	2
основных логических элементов (И, ИЛИ, НЕ, И-НЕ, ИЛИ-НЕ),	
реализованных на основе ТТЛ. 2. Преобразование логической функции,	
заданной в форме таблицы истинности, к виду удобному для реализации на	
элементах лабораторного стенда, разработка принципиальной схемы	
логического устройства и реализация его на лабораторном стенде.	
2.2 Исследование комбинационных логических устройств. Изучение	4
особенностей работы дешифраторов, мультиплексоров и	
демультиплексоров, цифровых сумматоров.	
2.3 Исследование последовательностных устройств. Экспериментальное	6
исследование работы триггеров, счетчиков и регистров.	
2.4 Исследование цифро-аналоговых преобразователей. Изучение	2
принципов построения и работы ЦАП, выполненных на интегральных	
микросхемах.	
Итого по разделу 2:	14
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Электронная техника	
1.1 Расчет параметров устройств на основе операционных усилителей.	4
Расчет параметров усилителей, активных частотных фильтров и генераторов	
электрических сигналов	
Итого по разделу 1:	4

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Микропроцессорная техника	
2.1 Синтез комбинационных схем логических устройств. 1. Построение	2
таблицы истинности 16 разрядного логического компонента по заданным	
значениям выходных сигналов, представленных в десятичной системе	
исчисления (с переводом в двоичную). 2. Составление логических функций	
в форме СДНФ и СКНФ. 3. Упрощение логических функций при помощи	
метода карт Карно. 4. Построение логической схемы устройства на основе	
полученных упрощенных уравнений в формах ДНФ и КНФ (с	
использованием базиса элементарных логических элементов).	
2.2 Синтез многовыходных комбинационных схем. 1. Построение	4
таблицы истинности параллельного цифрового компонента с 4-мя	
функциями выхода, осуществляющего преобразование определенной	
комбинации двоично-десятичного кода в требуемый по заданию код,	
соответствующий определенному набору выходных десятичных чисел; 2.	
Формирование системы логических функций и приведение их к	
упрощенному виду; 3. Выполнение синтеза и верификации схемы	
многовыходного логического устройства (верификация выполняется в он-	
лайн симуляторе электрических цепей и логических схем - CircuitJS)	
2.3 Синтез детерминированных конечных автоматов. 1. Построение	6
орграфа конечного автомата Мили; 2. Определение необходимого числа	
элементов памяти, количества входных и выходных шин; 3. Составление	
таблиц переходов, выходов и возбуждения элементов памяти; 4. Синтез	
комбинационной схемы конечного автомата на основе заданного набора	
логических элементов; 5. Преобразование конечного автомата Мили в	
эквивалентный автомат Мура с построением его орграфа и таблицы	
переходов.	
Итого по разделу 2:	12
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: ІТметоды, Обучение на основе опыта.

При проведении лабораторных работ используются следующие образовательные технологии: ІТ-методы, Работа в команде, Обучение на основе опыта, Поисковый метод, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Проектный метод.

Для организации самостоятельной работы используются следующие образовательные технологии: IT-методы, Обучение на основе опыта, Опережающая самостоятельная работа, Поисковый метод, Исследовательский метод.

Общее число часов занятий, проводимых в интерактивной форме – 32 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия		
	освоения			
ОПК-3	3-ОПК-3	ЛР1, Зд1, Т1, ЛР2, ЛР3, ЛР4, ЛР5, Зд2, Зд3, Зд4,		
		КР1, Т2, Зачет (5 сем.)		
ОПК-3	У-ОПК-3	3д1, Т1, ЛР2, ЛР3, ЛР4, ЛР5, Зд2, Зд3, Зд4, КР1,		
		Т2, Зачет (5 сем.)		
ОПК-3	В-ОПК-3	ЛР1, Зд1, Т1, ЛР4, Зд2, Зд3, Зд4, КР1, Т2, Зачет (5		
		сем.)		

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Диф. зачета.

Аттестация в 5 семестре:

Вид	Наименование видов контроля	Максимальная положительная	Минимальная положительная
контроля		оценка в баллах	оценка в баллах
	Текущая аттестац	ия	
ЛР1	Лабораторная работа	5	3
3д1	Задание (задача)	2	1.2
T1	Тестирование	5	3
ЛР2	Лабораторная работа	5	3
ЛР3	Лабораторная работа	5	3
ЛР4	Лабораторная работа	5	3
ЛР5	Лабораторная работа	5	3
3д2	Задание (задача)	5	3
3д3	Задание (задача)	5	3
3д4	Задание (задача)	10	6
KP1	Контрольная работа	5	3
T2	Тестирование	3	1.8
	Сумма:	60	36
	Промежуточная аттест	ация	
Дифференцир	ованный зачет	40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60

дисциплине							
Оценка (ECTS)	A	В	C	I)	Е	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)		(xop.)		(удо	вл.)	(неуд.)
Зачет		Зачтено					Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Дифференцированного зачета (5 семестр):

- 1 Понятие радиоэлектронного элемента, устройства, функциональной группы. Пассивные элементы электронных устройств: резисторы, конденсаторы, их основные электрические характеристики и схемы соединения.
 - 2 Индуктивности и трансформаторы. Основные электрические характеристики.
 - 3 Принцип действия и классификация полупроводниковых приборов.
- 4 Полупроводниковые диоды. Классификация, основные параметры и вольтамперные характеристики диодов.
 - 5 Варикап. Основные параметры варикапа. Добротность варикапа.
 - 6 Стабилитроны и тиристоры. Область применения и основные характеристики.
- 7 Биполярные транзисторы. Устройство и принцип действия биполярного транзистора. Статические характеристики и параметры биполярных транзисторов.
 - 8 Режимы работы и схемы включения транзисторов.
- 9 Полевые транзисторы. Классификация и характеристики полевых транзисторов. МОП-транзисторы.
- 10 Назначение, классификация, основные параметры и характеристики усилителей. Обратная связь в усилителях.
- 11 Усилители мощности. Специальные режимы работы транзисторов в усилительных каскадах.
- 12 Шумы электронных усилителей. Источники шумов. Коэффициент шума усилителя.
- 13 Дифференциальные усилители. Применение дифференциальных усилителей как схем расщепления фазы и в составе компараторов.
- 14 Операционные усилители (ОУ). Основные характеристики ОУ. Область применения ОУ. Классификация ОУ.
 - 15 Схемы на операционных усилителях (ОУ). Передаточные характеристики ОУ.
- 16 Фильтры электрических сигналов и их характеристики. Эффект резонанса в последовательных и параллельных фильтрах.
 - 17 Активные фильтры. Основные свойства и схемы активных фильтров.
- 18 Генераторы сигналов: назначение и классификация. Условия самовозбуждения генераторов.

- 19 Генераторы LC и RC-типа. Принципиальные схемы, частотные характеристики.
- 20 Преобразователи и генераторы импульсных сигналов. Компараторы, триггеры Шмитта, мульти- и одновибраторы.
 - 21 Генераторы линейно-изменяющихся напряжений.
- 22 Логические устройства и основные их типы. Определения логической переменной и функции. Основные типы логических элементов.
- 23 Особенности схемного построения логических элементов на основе ТТЛ и ТТЛШ;
- 24 Особенности схемного построения логических элементов на основе МОП и КМОП-логики;
 - 25 Особенности схемного построения логических элементов на основе ЭСЛ и И2Л;
 - 26 Основные параметры интегральных схем логических элементов.
- 27 Назначение, принцип действия и принципиальная схема простейшего шифратора и дешифратора.
- 28 Назначение, принцип действия и принципиальная схема простейшего мультиплексора и демультиплексора.
- 29 Триггеры. Классификация, условно-графические обозначения, таблицы состояний.
- 30 Счетчики импульсов их назначение и классификация. Реализация двоичных и двоично-десятичных счетчиков на базе Т-триггеров. Реверсивные счетчики.
 - 31 Регистры их назначение и классификация.
 - 32 Запоминающие устройства (ОЗУ, ПЗУ).
- 33 Причины возникновения и способы обнаружения ошибок при передаче информации.
- 34 Системный интерфейс. Основные способы кодировки слов в протоколах с битовой организацией. Обобщенная структура информационного кадра.
 - 35 Структура элементарного микропроцессора.
 - 36 Элементы и узлы АЦП и ЦАП.
 - 37 Основные параметры АЦП. Понятие ошибки квантования.
 - 38 Принцип работы параллельного АЦП.
 - 39 АЦП последовательного счета и последовательного приближения.
 - 40 АЦП двойного интегрирования и АЦП с преобразованием напряжения в частоту.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Гусев В. Г. Электроника и микропроцессорная техника [Текст]: учебник / В. Г. Гусев, Ю. М. Гусев Москва: КноРус, 2016 798 с.
- Л1.2 Калашников В. И. Электроника и микропроцессорная техника [Текст]: учебник / В. И. Калашников, С. В. Нефедов; под ред. Г. Г. Раннева Москва: Академия, 2012 368 с.
- Л1.3 Огородников И. Н. Микропроцессорная техника: введение в Cortex-M3: Учебное пособие для вузов / Огородников И. Н. Москва: Юрайт, 2021 116 с

8.2 Дополнительная литература

- Л2.1 eLIBRARY.RU [Электронный ресурс]: научная электронная библиотека Москва: ООО "РУНЭБ", 2021
- Л2.2 Горбунова О. Е. Электронная техника в экспериментах и упражнениях Elektronics Workbench [Электронный ресурс] / О. Е. Горбунова : Б.и.,
- Л2.3 Огородников И. Н. Микропроцессорная техника: введение в CORTEX-M3 [Текст]: учебное пособие для вузов / И. Н. Огородников Москва: Юрайт, 2017 116 с.

8.3 Информационно-образовательные ресурсы

Э1 Симулятор электрических цепей и логических схем (CircuitJS). - URL: https://www.falstad.com/circuit/circuitjs.html

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ http://www.ssti.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа н поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода ораторской деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта

и лекций, непосредственно к первоисточникам, использовать знание художественной литературы и искусства, факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения:
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам

- Подготовка к практическим занятиям, семинарам
- Выполнение индивидуальных заданий
- Выполнение расчетных работ
- Подготовка к промежуточному контролю: Дифференцированный зачет (5 семестр)

В течение 5 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Дифференцированному зачету по дисциплине. Студент на Дифференцированном зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Д.Ю. Давыдов