МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УПРАВЛЕНИЯ МЕХАТРОННЫМИ СИСТЕМАМИ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
7	5	180	16	32	32	0	100	Экз.
Итого	5	180	16	32	32	0	100	

Аннотация

Рабочая программа дисциплины «Математическое моделирование управления мехатронными системами» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 классификацию и методику построения математических моделей;
- 3.2 принцип моделирования и исследования мехатронных систем;
- 3.3 основы моделирования и исследования систем управления.

2) уметь:

- У.1 получать электронные модели различных элементов;
- У.2 моделировать и исследовать на ЭВМ элементы мехатронных систем;
- У.3 получать и исследовать динамические модели мехатронных систем;
- У.4 моделировать системы управления.

3) владеть или быть в состоянии продемонстрировать:

- В.1 методами анализа математических моделей мехатронных систем;
- В.2 прикладными программами для моделирования и исследования мехатронных систем

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Математическое моделирование управления мехатронными системами» являются:

- формирование у студентов знаний и основных принципов моделирования мехатронных систем;
- формирование у студентов навыков достижения оптимальных результатов при проектировании и исследовании мехатронных устройств.

Основными задачами дисциплины являются:

- умение использовать информационные технологии в профессиональной деятельности;
- умение составлять схемы простых мехатронных систем в соответствии с техническим заданием;
 - умение моделировать работу простых мехатронных систем;
- умение оптимизировать работу компонентов и модулей мехатронных систем в соответствии с технической документацией;
- умение пользоваться профессиональной документацией на государственном и иностранном языках.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Математическое моделирование управления мехатронными системами» (Б1.В.ОД.1.5) - Профессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание (профессиональный стандарт-ПС, анализ опыта)	Код и наименование индикатора достижения профессиональной компетенции
тип зада	ач профессионально	ой деятельности: научно-ис	следовательский
Анализ научно- технической информации, участие в проведении экспериментов на действующих макетах, обработка результатов с применением современных информационных технологий и технических средств. Исследования математических моделей мехатронных и робототехнических систем.	Мехатронные и робототехнические системы, и их составляющие: - информационно-	ПК-6 Способен проводить вычислительные эксперименты с использованием стандартных программных пакетов с целью исследования математических моделей мехатронных и робототехнических систем	3-ПК-6 знать основные методы исследования математических моделей мехатронных и робототехнических систем. У-ПК-6 уметь проводить исследования математических моделей изделий и электронных схем с использованием стандартных программных пакетов. В-ПК-6 владеть навыками экспериментального определения параметров математических моделей мехатронных и робототехнических систем.
	систем.		

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Математическое моделирование управления мехатронными системами» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в зачетных единицах – 5, 180 час., обучение по дисциплине проходит в семестре 7.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Моделирование»
- раздел 2 «Технологии моделирования электромеханических мехатронных модулей движения в среде SimInTech»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No	Наименование раздела	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные мероприятия		Макс. балл
145		Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
		7	семес	тр (19	неделі	ь)		
1	1 Моделирование				14		15/Д31	10
2	Технологии моделирования электромеханических мехатронных модулей движения в среде SimInTech		32	32	50	2/ЛР1, 4/ЛР2, 6/ЛР3, 8/ЛР4, 10/ЛР5, 12/ЛР6, 14/ЛР7, 16/ЛР8	16/Д32	50
	Экзамен				36			40
Итого за 7 семестр:		16	32	32	100			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать основные методы исследования математических моделей мехатронных и робототехнических систем. (3-ПК-6)	1, 2	Д31, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, ЛР8, Д32, Экзамен (7 сем.)
– уметь проводить исследования математических моделей изделий и электронных схем с использованием стандартных программных пакетов. (У-ПК-6)	1, 2	Д31, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, ЛР8, Д32, Экзамен (7 сем.)
- владеть навыками экспериментального определения параметров математических моделей мехатронных и робототехнических систем. (B-ПК-6)	1, 2	Д31, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, ЛР8, Д32, Экзамен (7 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Моделирование	
1.1 Моделирование. Назначение. Основные понятия. Общие	2
определения. Классификация методов моделирования по типу модели.	
Математическое моделирование и математические модели. Классификация	
методов математического моделирования применительно к этапам	
построения и исследования математической модели. Характеристики	
математической модели.	
1.2 Аналитическое моделирование. Метод графов связей. Компонентное	2
моделирование. Основные определения графов связей. Моделирование	
электрических систем на графах связей. Эквивалентные преобразования	
графов связей. Моделирование механических систем на графах связей.	
Моделирование электромеханических систем.	
1.3 Аналитическое моделирование. Метод графов связей. Построение	2
операторно-структурных схем по графам связей. Применение правила	
циклов к графам связей. Общие принципы графического представления	
мехатронных систем в пакетах автоматизированного моделирования.	
1.4 Исследование мехатронных систем во временной области.	2
Механизмы продвижения модельного времени. Алгоритмы численного	
моделирования нелинейных динамических систем.	
1.5 Исследование мехатронных систем во временной области.	2
Моделирование гибридных (событийно-управляемых) мехатронных систем.	

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
1.6 Автоматизированное моделирование технических объектов.	2
Особенности современных систем автоматизированного моделирования.	
Иерархическое проектирование и многоуровневое моделирование	
мехатронных систем.	
1.7 Автоматизированное моделирование технических объектов.	2
Архитектура программ автоматизированного моделирования. Методы	
построения моделирующих программ.	
1.8 Пакеты визуального моделирования Мехатронных систем.	2
Классификация пакетов моделирования технических систем. Пакеты	
структурного моделирования. Пакеты физического мультидоменного	
моделирования.	
Итого по разделу 1:	16
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Технологии моделирования электромеханических мехатронных	модулей
движения в среде SimInTech	4
2.1 Пакет SimInTech – визуальная среда моделирования мехатронных	4
систем. Принципы и методика моделирования. Запуск SimInTech. Панели	
инструментов главного окна и схемных окон. Демонстрационно-обучающие	
примеры моделирования в среде SimInTech.	
2.2 Математическое моделирование мехатронной системы. Цель работы	4
заключается в построении математической модели разрабатываемой	
мехатронной системы.	
2.3 Имитационное моделирование мехатронной системы. Цель работы	4
заключается в построении имитационной модели разрабатываемой	
мехатронной системы.	
2.4 Составление циклограмм работы мехатронной системы. Цель	4
работы заключается в построении циклограммы работы разрабатываемой	
мехатронной системы.	
2.5 Выбор устройств и составление кинематической схемы работы	4
мехатронной системы. Цель работы заключается в выборе необходимых	
устройств для реализации мехатронной системы, а также построении	
кинематической схемы манипулятора.	
2.6 Составление структурной схемы мехатронной системы. Цель работы	4
заключается в построении структурной схемы разрабатываемой	
мехатронной системы.	

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
2.7. Составление электрической и пневматической схем автоматизации	4
системы. Цель работы заключается в построении электрической и	
пневматической схем автоматизации разрабатываемой мехатронной	
системы.	
2.8 Составление схемы алгоритма программы контроллера	4
мехатронной системы. Цель работы заключается в построении схемы	
алгоритма программы контроллера разрабатываемой мехатронной системы.	
Итого по разделу 2:	32
Всего по лабораторному практикуму дисциплины:	32

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 — Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Технологии моделирования электромеханических мехатронных движения в среде SimInTech	модулей
2.1 Анализ и синтез мехатронных модулей движения как цифровых	2
электроприводов с обратными связями. Принципы цифрового управления электроприводами. Структурные модели цифровых	_
электроприводов. Анализ устойчивости цифровых электроприводов. Анализ качества цифровых электроприводов.	
2.2 Анализ и синтез мехатронных модулей движения как цифровых	2
электроприводов с обратными связями. Упрощенный метод синтеза	
цифровых электроприводов. Определение периода квантования	
непрерывных сигналов в цифровых электроприводах.	
2.3 Обобщенная функциональная структура, модели и методология	2
проектирования мехатронных модулей движения. Принципы построения	
мехатронных модулей движения. Математические модели мехатронных	
модулей движения. Задачи, концепция и этапы модельного проектирования модулей движения в среде SimInTech.	
2.4 Обобщенная функциональная структура, модели и методология	2
проектирования мехатронных модулей движения. Задачи, концепция и	
этапы модельного проектирования модулей движения в среде SimInTech.	
2.5 Математические модели дискретных и нелинейных элементов	2
цифровых электроприводов и их реализации в среде SimInTech. Общие	
сведения. Аналого-цифровые и цифроаналоговые преобразователи.	
Моделирование цифровых САР в среде SimInTech на основе линейных	
моделей.	_

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
2.6 Математические модели дискретных и нелинейных элементов	2
цифровых электроприводов и их реализации в среде SimInTech.	
Моделирование цифровых CAP в среде SimInTech с учетом нелинейных	
свойств элементов.	
2.7 Полупроводниковые преобразователи электромеханических	2
модулей движения. Силовые полупроводниковые элементы (диоды,	
тиристоры, биполярные транзисторы IGBT. Силовые полупроводниковые	
преобразователи электромеханических модулей движения.	
2.8 Полупроводниковые преобразователи электромеханических	2
модулей движения. Управляемые выпрямители. Широтно-импульсные	
преобразователи. Автономные инверторы .	
2.9 Полупроводниковые преобразователи в цепи питания мехатронных	2
модулей движения и их реализации в среде SimInTech. Расчетная схема	
питания мехатронного модуля движения. Выпрямитель с фильтром в	
качестве ВИП.	
2.10 Полупроводниковые преобразователи в цепи питания	2
мехатронных модулей движения и их реализации в среде SimInTech.	
Динамические и энергетические процессыв мехатронном модуле движения,	
питающегося от ВИП на базе выпрямителя.	2
2.11 Модули движения с двигателями постоянного тока.	2
Математическое описание двигателя постоянного тока (ДПТ). Синтез	
регуляторов в одноконтурном электроприводе постоянного тока. Синтез	
регуляторов в двухконтурном электроприводе постоянного тока.	
Электроприводы постоянного тока в мехатронных системах.	2
2.12 Модули движения с двигателями постоянного тока. Синтез регуляторов в следящей робототехнической системе постоянного тока.	2
Система управления устройством чтения-записи жесткого диска	
компьютера.	
2.13 Элементы проектирования мехатронных модулей движения.	2
Примеры проектирования мехатронных модулей движения. Пример 1.	_
Определение оптимального алгоритма функционирования мехатронного	
модуля движения с частотным асинхронным приводом рабочего органа	
промышленного робота.	
2.14 Элементы проектирования мехатронных модулей движения.	2
Примеры проектирования мехатронных модулей движения. Пример 2.	
Определение оптимального алгоритма функционирования мехатронного	
модуля движения рабочего органа с двигателем постоянного тока	
промышленного робота.	
2.15 Системы автоматического управления с микропроцессорными	2
ЭВМ. Принципы построения и работы систем. Структурные модели	
линейных (линеаризованных) систем.	
2.16 Системы автоматического управления с микропроцессорными	2
ЭВМ. Упрощенный метод синтеза линейных (линеаризованных) систем.	
Итого по разделу 2:	32
Всего по практическим / семинарским занятиям дисциплины:	32

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: ІТ-методы.

При проведении лабораторных работ используются следующие образовательные технологии: ІТ-методы, Работа в команде, Методы проблемного обучения, Обучение на основе опыта, Проектный метод.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ПК-6	3-ПК-6	Д31, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, ЛР8,
	Д32, Экзамен (7 сем.)	
ПК-6	У-ПК-6	ДЗ1, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, ЛР8,
		Д32, Экзамен (7 сем.)
ПК-6	В-ПК-6	ДЗ1, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, ЛР8,
		Д32, Экзамен (7 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 7 семестре:

	Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах
Текущая аттестация				
Ī	Д31	Домашнее задание	10	6

ЛР1	Лабораторная работа	5	3					
ЛР2	Лабораторная работа	5	3					
ЛР3	Лабораторная работа	5	3					
ЛР4	Лабораторная работа	5	3					
ЛР5	Лабораторная работа	5	3					
ЛР6	Лабораторная работа	5	3					
ЛР7	Лабораторная работа	5	3					
ЛР8	Лабораторная работа	5	3					
Д32	Домашнее задание	10	6					
	Сумма:	60	36					
Промежуточная аттестация								
Экзамен		40	24					
	Итого:	100	60					

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	C	I)	Е	F
Оценка по 4-х	отлично	отлично хорошо			удовлетворительно		неудовлетворительно
бальной шкале	(отл.)	(отл.) (хор.)			(удовл.)		(неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (7 семестр):

- 1 Математическое моделирование и математические модели. Основные понятия.
- 2 Классификация методов математического моделирования применительно к этапу построения математической модели.
- 3 Классификация методов математического моделирования применительно к этапу исследования математической модели.
 - 4 Характеристики математической модели.
 - 5 Моделирование электрических систем на графах связей.
 - 6 Моделирование механических систем на графах связей.
- 7 Общие принципы графического представления мехатронных систем в пакетах автоматизированного моделирования.
 - 8 Алгоритмы численного моделирования нелинейных динамических систем.
 - 9 Моделирование гибридных (событийно-управляемых) мехатронных систем.
 - 10 Особенности современных систем автоматизированного моделирования.

- 11 Иерархическое проектирование и многоуровневое моделирование мехатронных систем.
 - 12 Архитектура программ автоматизированного моделирования.
 - 13 Методы построения моделирующих программ.
 - 14 Пакеты структурного моделирования.
 - 15 Пакеты физического моделирования.
 - 16 Математические модели мехатронных модулей движения.
 - 17 Принципы построения мехатронных модулей движения.
 - 18 Принципы цифрового управления электроприводами.
 - 19 Структурные модели цифровых электроприводов.
 - 20 Аналого-цифровые и цифроаналоговые преобразователи.
 - 21 Моделирование цифровых CAP в среде SimInTech на основе линейных моделей.
- 22 Моделирование цифровых CAP в среде SimInTech с учетом нелинейных свойств элементов.
 - 23 Расчетная схема питания мехатронного модуля движения.
- 24 Динамические и энергетические процессы в мехатронном модуле движения, питающегося от ВИП на базе выпрямителя.
- 25 Силовые полупроводниковые преобразователи электромеханических модулей движения.
 - 26 Математическое описание двигателя постоянного тока (ДПТ).
 - 27 Синтез регуляторов в одноконтурном электроприводе постоянного тока.
 - 28 Синтез регуляторов в двухконтурном электроприводе постоянного тока.
 - 29 Синтез регуляторов в следящей робототехнической системе постоянного тока.
- 30 Разновидности математических моделей, получаемые на основе дифференциального уравнения.
 - 31 Передаточная функция и методы, применяемые для ее определения.
 - 32 Структурные схемы элементов и модулей движения. Способы их составления.
 - 33 Частотные характеристики (АФЧХ, АЧХ, ФЧХ).
- 34 Сущность Z-преобразования в теории дискретных (импульсных) систем. Что такое дискретная передаточная функция?
- 35 Сущность структурно-параметрического синтеза цифровых систем на основе метода переоборудования регулятора.
 - 36 Критерии оптимальности. Что такое оптимизируемые параметры?
 - 37 Сущность структурного моделирования САР.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Голубева Н. В. Математическое моделирование систем и процессов [Электронный ресурс] / Голубева Н. В. Санкт-Петербург: Лань, 2021 192 с.
- Л1.2 Стельмашонок Е. В. Моделирование процессов и систем: учебник и практикум для вузов / Е. В. Стельмашонок, В. Л. Стельмашонок, Л. А. Еникеева, С. А. Соколовская; под редакцией Е. В. Стельмашонок. Москва: Юрайт, 2024 304 с

8.2 Дополнительная литература

- Л2.1 Бехтин Ю. С. Моделирование распределения заданий в мультиробототехнических системах [Электронный ресурс]: учебное пособие / Бехтин Ю. С. Рязань: РГРТУ, 2016 52 с.
- $еxt{Л2.2}$ Пискажова Т. В. Математическое моделирование объектов и систем управления [Электронный ресурс]: учеб. пособие / Пискажова Т. В., Т.В Д. Д. Красноярск: СФУ, 2020 230 с.

- Л2.3 Черникова О. С. Компьютерное моделирование [Электронный ресурс]: учебное пособие / Черникова О. С., Карманов В. С. Новосибирск: НГТУ, 2021 100 с.
- Π 2.4 Чернусь П. П. Моделирование мехатронных систем [Электронный ресурс]: практическое пособие / Чернусь П. П., Чернусь П. П. Санкт-Петербург: БГТУ "Военмех" им. Д.Ф. Устинова, 2018 54 с.
- Л2.5 Филипас, Александр Александрович (1963- ; кандидат технических наук) . Имитационное структурное моделирование системы электропривода на ЦВМ с учетом нелинейностей [Электронный ресурс] : руководство к лабораторной работе / А. А. Филипас ; Федеральное агентство по атомной энергии, Северская государственная технологическая академия .— 1 компьютерный файл (pdf; 270 КВ) .— Северск : Изд-во СГТА, 2006 .— 16 с. : ил. Заглавие с титульного листа экрана .— Библиогр.: с. 16. Доступ из локальной сети учебного заведения .— Аdobe Reader .— .

8.3 Информационно-образовательные ресурсы

- Э1 Герман-Галкин, С. Г. Модельное проектирование электромеханических мехатронных модулей движения в среде SimInTech: практикум по моделированию систем автоматического регулирования / С. Г. Герман-Галкин, Б. А. Карташов, С. Н. Литвинов; Донской государственный технический университет; под ред. А. Н. Петухова.— 1 компьютерный файл (pdf; 192 Mb).— Москва: ДМК Пресс, 2021.— 494 с.: ил. Заглавие с титульного экрана.— Библиогр. в конце гл. Доступ из локальной сети учебного заведения.— Adobe Reader.— ISBN 978-5-97060-693-3.—.
- Э2 Среда динамического моделирования технических систем SimInTech: практикум по моделированию систем автоматического регулирования / Б. А. Карташов, Е. А. Шабаев, О. С. Козлов, А. М. Щекатуров. 1 компьютерный файл (pdf; 22,6 Mb). Москва: ДМК Пресс, 2017. 424 с.: ил. Заглавие с экрана. Библиогр.: с. 422-423. Доступ из локальной сети учебного заведения. Adobe Reader. ISBN 978-5-97060-482-3. .
- ЭЗ Хабаров, С. П. Основы моделирования технических систем. Среда Simintech [Электронный ресурс] : учебное пособие для спо / Хабаров С. П., Шилкина М. Л. Санкт-Петербург : Лань, 2021 .— 120 с. Книга из коллекции Лань Информатика .— ISBN 978-5-8114-6966-6 .— .— .

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

1) название работы;

- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к практическим занятиям, семинарам
- Подготовка к экзамену
- Подготовка к промежуточному контролю: Экзамен (7 семестр)

В течение 7 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Л.Н. Лохтина