МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

едеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ РАЗРАБОТКИ МЕХАТРОННЫХ СИСТЕМ ПЕРЕМЕЩЕНИЙ

НАПРАВЛЕНИЕ ПОДГОТОВКИ **15.03.06 Мехатроника и робототехника** НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
6	4	144	16	32	0	0	96	Экз.
Итого	4	144	16	32	0	0	96	

Аннотация

Рабочая программа дисциплины «Основы разработки мехатронных систем перемещений» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основные понятия программного обеспечения в мехатронных системах, модулях комплексах;
- 3.2 возможности программного обеспечения для анализа мехатронных систем и их элементов; перечень универсального и специализированного программного обеспечения; методы визуализации графической и цифровой информации;
- 3.3 механические, электрические и электронные узлы мехатронных и робототехнических систем.

2) уметь:

- У.1 правильно ориентироваться в главных терминах программного обеспечения мехатронных систем;
- У.2 разделять сложную мехатронную систему на связанные между собой элементы с целью дальнейшего моделирования и анализа; пользоваться библиотекой элементов и задавать их параметры;
- У.3 проводить исследования с применением современных информационных технологий.

3) владеть или быть в состоянии продемонстрировать:

- В.1 навыками разработки макетов управляющих, информационных и исполнительных модулей мехатронных и робототехнических систем;
 - В.2 навыками разработки конструкторской и проектной документации.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Основы разработки мехатронных систем перемещений» являются:

- освоение и изучения основных вопросов применительно к задачам проектирования управляющих систем многокомпонентных робототехнических и мехатронных комплексов;
 - формирование навыков комплексного проектирования мехатронных систем.

Основными задачами дисциплины являются:

- углубление и практическое применение фундаментальных определений, понятий мехатроники и робототехники, информационных систем для построения управляющих систем робототехнических и мехатронных комплексов;
- определение и формализация задач, стоящих перед мехатроникой, составление требований к компонентам мехатронных систем;
- углубленное осознание проблем проектировании управляющих систем многокомпонентных робототехнических и мехатронных комплексов;

- разработка отдельных подсистем, устройств и модулей, включая элементы конструкции, приводы, датчики информации, микропроцессорные устройства управления, разработка программного обеспечения для решения задач управления и проектирования;
- разработка отдельных подсистем, устройств и модулей, включая элементы конструкции, приводы, датчики информации, микропроцессорные устройства управления; разработка.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Основы разработки мехатронных систем перемещений» (Б1.В.ОД.1.2) - Профессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача	Объект или	Код и наименование	
профессиональной	область знания	профессиональной	Код и наименование
* *	ооласть знания		
деятельности (ЗПД)		компетенции;	индикатора достижения
		Основание	профессиональной
		(профессиональный	компетенции
		стандарт-ПС, анализ опыта)	
тип зада	ч профессиональн	ой деятельности: научно-ис	следовательский
Анализ научно-	Мехатронные и	ПК-6 Способен проводить	3-ПК-6 знать основные методы
технической	робототехнические	вычислительные эксперименты	исследования математических
информации, участие в	системы, и их	с использованием стандартных	моделей мехатронных и
проведении	составляющие: -	программных пакетов с целью	робототехнических систем.
экспериментов на	информационно-	исследования математических	У-ПК-6 уметь проводить
действующих макетах,	сенсорные,	моделей мехатронных и	исследования математических
обработка результатов	исполнительные и	робототехнических систем	моделей изделий и электронных
с применением	управляющие		схем с использованием
современных	модули		стандартных программных
информационных	мехатронных и		пакетов.
технологий и	робототехнических		В-ПК-6 владеть навыками
технических средств.	систем; -		экспериментального определения
Исследования	математическое,		параметров математических
математических	алгоритмическое и		моделей мехатронных и
моделей мехатронных	программное		робототехнических систем.
и робототехнических	обеспечение		
систем.	мехатронных и		
	робототехнических		
	систем; - методы		
	и средства		
	проектирования,		
	моделирования,		
	экспериментального		
	исследования		
	мехатронных и		
	робототехнических		
	систем; -		
	научные		
	исследования и		
	производственные		
	испытания		
	мехатронных и		
	робототехнических		
	систем.		

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Основы разработки мехатронных систем перемещений» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в зачетных единицах -4, 144 час., обучение по дисциплине проходит в семестре 6.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Основные положения»
- раздел 2 «Проектирование»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No		само	тельнос остоятел энтов и т	ьную ра	боту	Аттестационные ме	роприятия	Макс. балл	
No	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел	
		6	семес	тр (16	недел	ь)			
1	Основные положения	6	12		18	6/Д31	6/Д32	15	
2	Проектирование		20		42	13/Д33, 15/Д34, 9/Д35, 15/Д36	16/T1	45	
Экзамен					36			40	
Итог	го за 6 семестр:	16	32		96			100	

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать основные методы исследования математических		Д31, Д32, Д33,
моделей мехатронных и робототехнических систем. (3-	1, 2	Д34, Д35, Д36, Т1,
ПК-6)		Экзамен (6 сем.)

– уметь проводить исследования математических моделей		Д31, Д32, Д33,
изделий и электронных схем с использованием	1, 2	Д34, Д35, Д36, Т1,
стандартных программных пакетов. (У-ПК-6)		Экзамен (6 сем.)
– владеть навыками экспериментального определения		Д31, Д32, Д33,
параметров математических моделей мехатронных и	1, 2	Д34, Д35, Д36, Т1,
робототехнических систем. (В-ПК-6)		Экзамен (6 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

двигателей. Технические характеристики поворотных следящих приводов. <i>Итого по разделу 2:</i>	10
Технические характеристики пневматических поршневых поворотных двигателей. Технические характеристики поворотных следящих приводов.	
Технические характеристики пневмогидравлических цилиндров.	
2.5 Проектирование пневматических и гидравлических приводов.	2
привода.	
следящего электромеханического привода. Оценка точностных показателей	
управляющих элементов следящего привода. Динамический расчет	
двигателя. Особенности проектирования следящих приводов. Выбор	
оптимального передаточного числа редуктора привода. Выбор шагового	
2.4 Проектирование электромеханических приводов МС. Расчет	2
режимах работы. Выбор ЭД для следящих систем.	
нагрузке. Выбор ЭД при кратковременном и повторно-кратковременном	
сведения по выбору электродвигателей. Выбор ЭД при длительной	
2.3 Проектирование электромеханических приводов МС. Общие	2
точности механических структур МС.	
ошибок механизма. Определение погрешностей механизм. Пути повышения	
2.2 Точность механизмов мехатронных систем. Причины появления	2
Программное движение МС.	
кинематических и динамических параметров звена приведения.	
2.1 Динамические особенности проектирование МС. Определение	2
Раздел 2 Проектирование	
Итого по разделу 1:	6
приближения; метод наилучшего (равномерного) приближения.	
механической части МС. Метод интерполирования; метод квадратического	
1.3 Синтез кинематических моделей. Общие вопросы синтеза	2
проектирования.	2
технологии управления движением, технологии автоматизированного	
систем. Гибридные технологии электромеханики и механики. Цифровые	
1.2 Технологическое обеспечение мехатронных и робототехнических	2
Общие вопросы разработки.	
1.1 Роботы как механические системы. Базовые понятия и принципы.	2
Раздел 1 Основные положения	
Codephanic bases to manife bases	ауд. час
Содержание разделов / тематика разделов	Трудоемкості разделов/тем

5.3 Содержание лабораторного практикума

Лабораторный практикум в соответствии с рабочим учебным планом не предусмотрен.

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 4.

Таблица 4 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Основные положения	
1.1 Концепция построения мехатронных устройств. Структура и	2
принципы интеграции мехатронных систем.	
1.2 Проектные решения по изделию. Разработка концепции изделия.	2
Декомпозиция изделия на принципах мехатроники.	
1.3 Основные направления развития мехатронных и	2
робототехнических систем. Интеграция. Интеллектуализация.	
Миниатюризация.	
1.4 Проектирование рабочих органов. Проектирование захватных	2
устройств.	
1.5 Проектирование кинематических моделей. Последовательность	2
принятия проектных решений при проектировании механизмов. Разработка	
кинематической модели механизма. Кинематические шарнирно-стержневые	
модели многоподвижных механизмов.	
1.6 Проектирование кинематических моделей. Кинематические модели	2
механизмов параллельной структуры. Решение задач оптимального выбора	
геометрических параметров кинематических моделей многозвенных	
механизмов. Показатели качества кинематических моделей.	
Итого по разделу 1:	12
Раздел 2 Проектирование	
2.1 Проектирование механической модели. Общие вопросы	2
проектирования механической. Общие задачи конструирования механизмов.	
Разработка механической модели.	
2.2 Проектирование механической модели. Проектирование сопряжения	2
с ВМЗ. Разработка приводных модулей механизма. Выбор двигателей	
приводов мехатронных машин.	
2.3 Проектирование механической модели. Выбор и расчет подвижных	2
опор. Выбор и расчет неподвижных опор механизма.	
2.4 Разработка аппаратных средств сбора и представления данных.	2
Датчики состояния мехатронного устройства (МУ). Проектирование	
датчиков конечных и промежуточных дискретных положений подвижных	
звеньев мехатронного устройства. Датчики перемещений (пути).	
2.5 Разработка аппаратных средств сбора и представления данных.	2
Датчики скорости. Датчики ускорений (акселерометры). Датчики тока.	
Выбор и размещение силомоментных датчиков. Выбор и размещение	
датчиков температуры.	

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
2.6 Разработка аппаратных средств сбора и представления данных.	2
Наблюдатели состояния мехатронного устройства или его частей. Общий	
алгоритм оптимального выбора датчиков внутренней информации. Датчики	
информации о внешних воздействиях на МУ и о состоянии внешнего мира.	
2.7 Проектирование управляемых источников питания. Управляемые	2
источники питания. Усилители входного сигнала с источником первичной	
энергии постоянного тока или напряжения. Управляемые преобразователи	
импульсного сигнала. Управляемые источники питания на базе источников	
энергии с гармоническим сигналом.	
2.8 Проектирование управляемых источников питания. Управляемые	2
преобразователи импульсного сигнала в импульсный с источником DC (СИ	
— DC — СИ). Источники периодического сигнала, управляемые	
прерывателями (преобразователи ШИМ — СИ — СИ). Выбор	
преобразователей для питания электрогидравлических и	
электропневматических двигателей.	
2.9 Проектирование цифровых систем управления мехатронными	2
машинами. Понятие об устройстве цифрового управления мехатронной	
машины. Состав проектных работ по системе управления мехатронной	
машиной. Синтез функциональной структуры и выбор критериев качества.	
Разработка информационного обеспечения УЦУ.	
2.10 Современные требования к мехатронным и робототехническим	2
требованиям. Новые функциональные задачи. Интегрированные приводы.	
Интеллектуальные мехатронные и робототехнические системы.	
Итого по разделу 2:	20
Всего по практическим / семинарским занятиям дисциплины:	32

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: IT-методы.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Работа в команде, Опережающая самостоятельная работа, Проектный метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Опережающая самостоятельная работа, Поисковый метод.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ПК-6	3-ПК-6	Д31, Д32, Д33, Д34, Д35, Д36, Т1, Экзамен (6
		сем.)
ПК-6	У-ПК-6	Д31, Д32, Д33, Д34, Д35, Д36, Т1, Экзамен (6
		сем.)
ПК-6	В-ПК-6	Д31, Д32, Д33, Д34, Д35, Д36, Т1, Экзамен (6
		сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 6 семестре:

Вид		Максимальная	Минимальная				
	Наименование видов контроля	положительная	положительная				
контроля		оценка в баллах	оценка в баллах				
	Текущая аттестац	ия					
Д31	Домашнее задание	5	3				
Д32	Домашнее задание	10	6				
Д33	Домашнее задание	10	6				
Д34	Домашнее задание	10	6				
Д35	Домашнее задание	10	6				
Д36	Домашнее задание	10	6				
T1	Тестирование	5	3				
	Сумма:	60	36				
	Промежуточная аттестация						
Экзамен		40	24				
	Итого:	100	60				

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	С	I)	Е	F
Оценка по 4-х бальной шкале	отлично (отл.)	хорошо (хор.)			1 3	рительно овл.)	неудовлетворительно (неуд.)
Зачет				Не зачтено			

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (6 семестр):

- 1 Мехатронные системы. Структура и принципы интеграции.
- 2 Разработка концепции изделия.
- 3 Декомпозиция изделия на принципах мехатроники.
- 4 Разработка кинематической модели механизма.
- 5 Синтез кинематических моделей. Метод интерполирования.
- 6 Синтез кинематических моделей. Метод квадратического приближения.
- 7 Синтез кинематических моделей. Метод наилучшего (равномерного) приближения.
 - 8 Определение кинематических параметров звена приведения.
 - 9 Определение динамических параметров звена приведения.
 - 10 Программное движение МС.
- 11 Причины появления ошибок механизма. Пути повышения точности механических структур MC.
 - 12 Выбор ЭД при длительной нагрузке.
 - 13 Выбор ЭД при кратковременном и повторно-кратковременном режимах работы.
 - 14 Выбор ЭД для следящих систем.
- 15 Особенности проектирования следящих приводов. Выбор управляющих элементов следящего привода.
 - 16 Кинематические шарнирно-стержневые модели многоподвижных механизмов.
 - 17 Кинематические модели механизмов параллельной структуры.
- 18 Задачи оптимального выбора геометрических параметров кинематических моделей многозвенных механизмов.
 - 19 Показатели качества кинематических моделей.
 - 20 Выбор и расчет подвижных опор.
 - 21 Выбор и расчет неподвижных опор механизма.
 - 22 Датчики состояния мехатронного устройства (МУ).
 - 23 Датчики перемещений (пути).
 - 24 Датчики скорости. Датчики ускорений (акселерометры).
 - 25 Датчики тока.
 - 26 Датчики температуры.
- 27 Датчики информации о внешних воздействиях на МУ и о состоянии внешнего мира.
 - 28 Наблюдатели состояния мехатронного устройства или его частей.
 - 29 Общий алгоритм оптимального выбора датчиков внутренней информации.
- 30 Усилители входного сигнала с источником первичной энергии постоянного тока или напряжения.
- 31 Управляемые источники питания на базе источников энергии с гармоническим сигналом.

- 32 Управляемые преобразователи импульсного сигнала в импульсный с источником DC.
 - 33 Источники периодического сигнала, управляемые прерывателями.
 - 34 Состав проектных работ по системе управления мехатронной машиной.
 - 35 Разработка информационного обеспечения УЦУ.
 - 36 Интеллектуальные мехатронные и робототехнические системы.
- 37 Выбор преобразователей для питания электрогидравлических и электропневматических двигателей.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

 Π 1.1 Лукинов А. П. Проектирование мехатронных и робототехнических устройств [Электронный ресурс]: учебное пособие для вузов / Лукинов А. П. - Санкт-Петербург: Лань, 2023 - 608 с.

8.2 Дополнительная литература

- Л2.1 Герман-Галкин С. Г. Модельное проектирование электромеханических мехатронных модулей движения в среде SimInTech: практикум по моделированию систем автоматического регулирования / С. Г. Герман-Галкин, Б. А. Карташов, С. Н. Литвинов; Донской государственный технический университет; под ред. А. Н. Петухова Москва: ДМК Пресс, 2021 494 с.
- Л2.2 Проектирование мехатронных модулей механических систем / Ершов Д. Ю., Лукьяненко И. Н., Аман Е. Э., Захарова В. П. : Б.и., Ч. 3: Ершов Д. Ю. Основы проектирования и расчета деталей, узлов и механизмов машин и приборов. Ч. 3: учеб. пособие / Ершов Д. Ю., Лукьяненко И. Н., Аман Е. Э., Захарова В. П. 82 с.
- Л2.3 Проектирование мехатронных модулей механических систем / Ершов Д. Ю.,Лукьяненко И. Н.,Аман Е. Э.,Смирнова А. О. : Б.и., Ч. 1: Ершов Д. Ю. Теоретические основы расчета машин и механизмов. Ч. 1 / Ершов Д. Ю.,Лукьяненко И. Н.,Аман Е. Э.,Смирнова А. О. 83 с.
- Л2.4 Проектирование мехатронных модулей механических систем / Ершов Д. Ю., Лукьяненко И. Н., Аман Е. Э., Смирнова А. О. : Б.и., Ч. 2: Ершов Д. Ю. Теоретические основы расчета на прочность и жесткость машин и механизмов. Ч. 2 / Ершов Д. Ю., Лукьяненко И. Н., Аман Е. Э., Смирнова А. О. 73 с.
- Л2.5 Рачков М. Ю. Пневматические системы автоматики: учебное пособие для вузов / М. Ю. Рачков. Москва: Юрайт, 2024 264 с

8.3 Информационно-образовательные ресурсы

- Э1 Распределенный сводный каталог библиотек институтов НИЯУ МИФИ (http://library.mephi.ru)
 - Э2 Информационная система Google-Академия http://scholar.google.com/
- ЭЗ Лукинов, А. П. Проектирование мехатронных и робототехнических устройств: учебное пособие / А. П. Лукинов. Санкт-Петербург: Лань, 2012. 608 с. [Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/2765.
- Э4 Ургапова, Г. Б. Детали мехатронных модулей роботов и их конструирование : учебное пособие / Г. Б. Ургапова, Е. А. Чеканина, Н. Т. . Москва : РТУ МИРЭА, 2021. 36 с. Электронный ресурс]: Режим доступа: https://e.lanbook.com/book/218759
- Э5 Тимофеев, Г. А. Теория механизмов и машин : учебник и практикум для вузов / Г. А. Тимофеев. 4-е изд., перераб. и доп. Москва : Издательство Юрайт, 2024. 432 с. [Электронный ресурс]: Режим доступа: https://urait.ru/bcode/535433

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить

ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к практическим занятиям, семинарам
- Выполнение домашних заданий
- Подготовка к промежуточному контролю: Экзамен (6 семестр)

В течение 6 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Л.Н. Лохтина