МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МИКРОПРОЦЕССОРНАЯ ТЕХНИКА В МЕХАТРОНИКЕ И РОБОТОТЕХНИКЕ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
5	5	180	32	32	16	0	100	Экз., КР
Итого	5	180	32	32	16	0	100	

Аннотация

Рабочая программа дисциплины «Микропроцессорная техника в мехатронике и робототехнике» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 архитектуру и интерфейс микропроцессоров
- 3.2 микропроцессорный комплект
- 3.3 способы, методы и циклы обмена, виды адресации
- 3.4 систему команд
- 3.5 устройства сопряжения с объектом управления, процессы, состояния процессов, события, диспетчеры и мониторы
 - 3.6 программирование
- 3.7 способы отладки программных средств микропроцессорных систем, реализующих алгоритмы управления

2) уметь:

- У.1 использовать микропроцессорные средства для построения и диагностирования систем управления
- У.2 разрабатывать и отлаживать программные средства микропроцессорных систем, реализующие алгоритмы управления
- У.3 применять стандартные программы САПР для проектирования микропроцессорных систем

3) владеть или быть в состоянии продемонстрировать:

В.1 навыками выбора и применения микропроцессоров в приводах мехатронных и робототехнических систем; микропроцессорной обработки данных в информационных системах

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Микропроцессорная техника в мехатронике и робототехнике» являются:

- получение знаний и формирование у обучающихся умений и навыков в области архитектуры и интерфейса микропроцессорных систем автоматизации и управления на базе 8-ми и 16-ти разрядных микропроцессоров, а также их программирование

Основными задачами дисциплины являются:

- ознакомление с основами микропроцессорной техникой в роботизированных системах;
 - изучение основных принципов программирования на машинном языке;
- формирование у обучающихся теоретических и практических навыков при разработке, наладке, программировании и применении микропроцессорной техники в мехатронике и робототехнике.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Микропроцессорная техника в мехатронике и робототехнике» (Б1.В.ОД.1.1) - Профессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Профессиональные компетенции в соответствии с задачами и объектами (областями знаний) профессиональной деятельности:

Задача профессиональной деятельности (ЗПД)	Объект или область знания	Код и наименование профессиональной компетенции; Основание	Код и наименование индикатора достижения профессиональной
		(профессиональный стандарт-ПС, анализ опыта)	компетенции
тип задач	и профессиональной	й деятельности: сервисно-э н	ссплуатационный
Настройка системы		ПК-11 Способен настраивать	3-ПК-11 знать структуру систем
управления и		системы управления и	управления технологическим
обработки информации	системы, и их	обработки информации,	оборудованием, основы
для управляющих	составляющие: -	управляющие средства и	регламентного эксплуатационного
средств и комплексов.	информационно-	комплексы и осуществлять их	обслуживания систем управления и
Осуществление	сенсорные,	регламентное	обработки информации,
регламентного	исполнительные и	эксплуатационное	управляющих средств и
эксплуатационного	управляющие	обслуживание с	комплексов, особенности методов
обслуживания с	модули	использованием	диагностики мехатронных систем.
использованием	мехатронных и	соответствующих	У-ПК-11 уметь использовать
соответствующих	робототехнических	инструментальных средств	инструментальные средства для
инструментальных	систем; -		настройки систем управления и
средств. Проверка	математическое,		обработки информации,
технического	алгоритмическое и		управляющих средств и
состояния	программное		комплексов.
оборудования,	обеспечение		В-ПК-11 владеть навыками
проведения	мехатронных и		настройки систем управления и
профилактического	робототехнических		обработки информации,
контроля и ремонта	систем; - методы и		управляющих средств и
путем замены	средства		комплексов.
отдельных модулей.	проектирования,		
	моделирования,		
	экспериментального		
	исследования		
	мехатронных и		
	робототехнических		
	систем; - научные		
	исследования и		
	производственные		
	испытания		
	мехатронных и		
	робототехнических		
	систем.		

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Микропроцессорная техника в мехатронике и робототехнике» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **5**, **180 час.**, обучение по дисциплине проходит в **семестре 5**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Арифметико-логические основы управляющих ЭВМ»
- раздел 2 «Микропроцессорные системы»
- раздел 3 «Микропроцессорные системы в мехатронике и робототехнике»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№	Наименование раздела	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные мероприятия		Макс. балл
J√ō		Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
	<u> </u>	5	5 семес	тр (18	недел	ь)		
1	Арифметико- логические основы управляющих ЭВМ	4	4		2	2/3д1		6
2	Микропроцессорные системы	10	8		4	4/3д2, 6/3д3		12
3	Микропроцессорные системы в мехатронике и робототехнике	18	20	16	22	3/ЛР1, 7/ЛР2, 11/ЛР3, 15/ЛР4, 8/Зд4, 10/Зд5, 12/Зд6, 14/Зд7, 16/Зд8		42
	Курсовая работа				36			
Экзамен		•	•	•	36			40
Итого за 5 семестр:		32	32	16	100			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать структуру систем управления технологическим		3д1, 3д2, 3д3, ЛР1,
оборудованием, основы регламентного		ЛР2, ЛР3, ЛР4,
эксплуатационного обслуживания систем управления и	1, 2, 3	Зд4, Зд5, Зд6, Зд7,
обработки информации, управляющих средств и	1, 2, 3	Зд8, Экзамен (5
комплексов, особенности методов диагностики		сем.), Курсовая
мехатронных систем. (3-ПК-11)		работа
		3д1, 3д2, 3д3, ЛР1,
VALOTE HARATE SABOTE THICTON MANTER II HE IA ANAHATDA THE		ЛР2, ЛР3, ЛР4,
 уметь использовать инструментальные средства для настройки систем управления и обработки информации, 	1, 2, 3	Зд4, Зд5, Зд6, Зд7,
управляющих средств и комплексов. (У-ПК-11)	1, 2, 3	3д8, Экзамен (5
управляющих средств и комплексов. (3-11к-11)		сем.), Курсовая
		работа
		3д1, 3д2, 3д3, ЛР1,
DECEMBER AND MANAGEMENT OF STREET OF STREET OF STREET		ЛР2, ЛР3, ЛР4,
 – владеть навыками настройки систем управления и обработки информации, управляющих средств и 	1 2 2	Зд4, Зд5, Зд6, Зд7,
комплексов. (В-ПК-11)	1, 2, 3	Зд8, Экзамен (5
ROMILICACOB. (D-IIR-II)		сем.), Курсовая
		работа

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Арифметико-логические основы управляющих ЭВМ	
1.1 Уровни представления цифровых устройств. Трехуровневая модель цифровых устройств. Логическая модель. Модель с задержками. Физическая модель	2
1.2 Операции над двоичными числами. Двоичная, восьмеричная и шестнадцатеричная системы счисления. Представление натуральных, целых и вещественных числе в ЭВМ. Арифметические операции над двоичными числами в прямом, инверсном и дополнительном кодах	2
Итого по разделу 1:	4
Раздел 2 Микропроцессорные системы	
2.1 Классификация микропроцессоров . Классификация микропроцессоров и микроконтроллеров. Обзор современных микроконтроллеров различных фирм.	2
2.2 Устройство и организация современных микропроцессоров. Структурная схема микро-ЭМВ. Шины адреса, данных и управления.	2
2.3 Архитектура микропроцессоров. Гарвардская архитектура. Принстонская архитектура. CISC-процессор. RISC-процессор. Регистры общего назначения. Регистры внешних устройств. Конвейер команд	2

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
2.4 Характеристики микропроцессоров . Точность. Быстродействие. Набор команд. Адресность и способы адресации. Режимы обмена.	2
2.5 Системы команд микропроцессоров. Различие в системе команд CISC и RISC архитектур. Команды пересылки данных. Команды загрузки регистров. Программный счетчик. Аккумулятор.	2
Итого по разделу 2:	10
Раздел 3 Микропроцессорные системы в мехатронике и робототехнике	
3.1 Микропроцессорные системы в мехатронике и робототехнике. Цифровые сигнальные процессоры. Сопроцессор расчета ускорений и скорости мехатронного модуля (motion chip). Программируемые логические матрицы и устройства	2
3.2 Алгоритмические основы микропроцессорных систем (книга). Задачи арифмитической обработки информации представленной в различных форматах (целые, знаковые, с плавающей запятой). Алгоритмы и методы программирования данных задач	2
3.3 Основы применения интерфейсов и протоколов связи в мехаторонных и робототехнических системах. Понятие интерфейс и протокол. Классификация интерфейсов и протоколов. Основные характеристики и области применения. CAN интерфейс. EtherCAT интерфейс	2
3.4 Основы цифровой обработки данных в системах автоматического управления (книга). Обработка аналоговых и дискретных сигналов. Применение и реализация цифровых фильтров.	4
3.5 Интерфейсы измерительных систем (книга). Поддержка протокола RS-232 (USART). Последовательный интерфейс периферийных устройств SPI и I2C.	2
3.6 Интегрированная среда разработки и отладки программного обеспечения микропроцессорных систем. Обзор среды IAR EmbededWorkbench. Формирование проекта, настройка проекта, загрузка, отладка программного кода	4
3.7 Операционные системы в мехатроных и роботизированных системах. . Классификация операционных систем (ОС) по областям применения. ОС реального времени (ОСРВ). Характеристики ОС. Обзор существующих ОС. Знакомство с ОСРВ WxVorks, FreeRTOS.	2
Итого по разделу 3:	18
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
---	-------------------------------------

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 3 Микропроцессорные системы в мехатронике и робототехнике	
3.1 Динамическая индикация . Научиться работать с семисегментным	4
светодиодным индикатором в режиме динамической индикации, освоить	
оператор выбора и применение табличной выборки	
3.2 Работа с матричной клавиатурой. Научиться работать с матричной	4
клавиатурой, выполнять программный опрос клавиатуры	
3.3 Разработка электронных часов. Научиться работать с прерываниями	4
таймера на примере микроконтроллера ATMega8	
3.4 Работа с индикатором 1602. Научиться отображать информацию на	4
жидкокристаллическом индикаторе 1602	
Итого по разделу 3:	16
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Арифметико-логические основы управляющих ЭВМ	
1.1 Знакомство с ПО AVR Studio. Изучение назначения и особенностей	4
архитектуры однокристальных микроконтроллеров; ознакомление с	
архитектурой и программной моделью AVR-микроконтроллеров; изучение	
этапов разработки ПО для встраиваемых микропроцессоров; приобретение	
навыков работы в среде AVR Studio	
Итого по разделу 1:	4
Раздел 2 Микропроцессорные системы	
2.1 Способы адресации операндов. Изучение способов адресации	4
операндов в AVR-микроконтроллерах; сравнение различных способов	
адресации по быстродействию и размеру программного кода	
2.2 Арифметические и логические команды. Изучение команд сложения,	4
вычитания, операций, «и», «или», «не» с регистрами и константами, а также	
установки, сброса и сдвига разрядов, команд установки и сброса флагов, и	
команд сравнения РОН	
Итого по разделу 2:	8
Раздел 3 Микропроцессорные системы в мехатронике и робототехнике	
3.1 Реализация типовых структур алгоритмов. Изучение принципов	4
реализации типовых алгоритмических структур на примере ветвлений и	
циклических программ	
3.2 Организация подпрограмм. Получение практических навыков по	4
организации подпрограмм и передаче параметров	

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
3.3 Система прерываний. Получение практических навыков по работе	4
системы прерываний на примере прерывания по переполнению встроенного	
таймера-счетчика AVR-микроконтроллера	
3.4 Работа с таймером. Получение практических навыков по работе с	4
таймером на примере микроконтроллера ATMega8	
3.5 Программирование линейных алгоритмов. Получение практических	4
навыков по разработке и программированию простейших линейных	
алгоритмов и моделированию работы устройства на его основе, настройке	
портов контроллера и произведению операций вывода данных	
Итого по разделу 3:	20
Всего по практическим / семинарским занятиям дисциплины:	32

5.5 Курсовое проектирование

В соответствии с рабочим учебным планом предусмотрено выполнить: Курсовая работа (5 семестр).

Курсовая работа включает в себя разработку и программирование микропроцессора для управления исполнительным механизмом.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: Опережающая самостоятельная работа.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Методы проблемного обучения.

При проведении практических занятий используются следующие образовательные технологии: Работа в команде, Обучение на основе опыта, Опережающая самостоятельная работа, Проектный метод, Поисковый метод.

Для организации самостоятельной работы используются следующие образовательные технологии: Проектный метод, Поисковый метод, Исследовательский метод.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия	
	освоения		
ПК-11	3-ПК-11	3д1, 3д2, 3д3, ЛР1, ЛР2, ЛР3, ЛР4, 3д4, 3д5, 3д6,	
		Зд7, Зд8, Экзамен (5 сем.), Курсовая работа	
ПК-11	У-ПК-11	3д1, 3д2, 3д3, ЛР1, ЛР2, ЛР3, ЛР4, 3д4, 3д5, 3д6	
		Зд7, Зд8, Экзамен (5 сем.), Курсовая работа	
ПК-11	В-ПК-11	3д1, 3д2, 3д3, ЛР1, ЛР2, ЛР3, ЛР4, 3д4, 3д5, 3д6,	
		Зд7, Зд8, Экзамен (5 сем.), Курсовая работа	

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 5 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах		
	Текущая аттестац	ия			
3д1	Задание (задача)	6	3.6		
3д2	Задание (задача)	6	3.6		
3д3	Задание (задача)	6	3.6		
ЛР1	Лабораторная работа	3	1.8		
ЛР2	Лабораторная работа	3	1.8		
ЛР3	Лабораторная работа	3	1.8		
ЛР4	Лабораторная работа	3	1.8		
3д4	Задание (задача)	6	3.6		
3д5	Задание (задача)	6	3.6		
3д6	Задание (задача)	6	3.6		
3д7	Задание (задача)	6	3.6		
3д8	Задание (задача)	6	3.6		
	Сумма:	60	36		
	Промежуточная аттестация				
Экзамен		40	24		
	Итого:	100	60		

Итоговая оценка выставляется в соответствии со следующей шкалой:

дисциплине Оценка (ECTS)	100–90 A	89–85 B	84–75 C	74–70 I	69–65	64–60 E	ниже 60 F
Оценка по 4-х бальной шкале	отлично (отл.)	хорошо (хор.)			удовлетворительно (удовл.)		неудовлетворительно (неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (5 семестр):

- 1 Двоичная арифметика.
- 2 Булева алгебра.
- 3 Понятие о комбинационной схеме.
- 4 Понятие о конечном автомате
- 5 Организация вычислительного процесса. Принцип хранимой программы.
- 6 Обобщенная структурная схема ЭВМ.
- 7 УСО (Устройство Связи с Объектом).
- 8 Архитектурные и структурные особенности УЭВМ. Принципы проектирования.
- 9 Классификация УЭВМ по назначению (узкоспециализированные, УЭВМ широкого назначения).
 - 10 Назначение и область применения УЭВМ. Структуры АСУ с ЭВМ в различных
 - 11 областях применения.
 - 12 Точность ЭВМ.
 - 13 Быстродействие ЭВМ.
 - 14 Адресность и способы адресации.
 - 15 Набор команд.
 - 16 Режимы обмена.
 - 17 Структура МК К1816ВЕ51.
 - 18 Принцип работы МК К1816ВЕ5.
 - 19 Эволюционное развитие структур АСУ ТП
 - 20 Программно-технические комплексы на базе контроллеров
 - 21 Характеристики ПТК
 - 22 Классификация ПТК
 - 23 Особенности выбора ПТК для конкретного объекта
 - 24 ПТК ведущих компаний
 - 25 Требования к ЦПС
 - 26 Стандартные ЦПС
 - 27 Общие проблемы применения ЦПС
 - 28 Нормирующие преобразователи
 - 29 Дискретные модули УСО
 - 30 Аналого-цифровые УСО
 - 31 Устройства удаленного сбора данных и управления

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Π 1.1 Засов В. А. Микропроцессорная техника [Электронный ресурс]: конспект лекций для студ. спец. 220401 "мехатроника" очн. формы обучения / Засов В. А. Самара: СамГУПС, 2008 196 с.
- Л1.2 Смирнов Ю. А. Основы микроэлектроники и микропроцессорной техники [Электронный ресурс] / Смирнов Ю. А.,Соколов С. В.,Титов Е. В. Санкт-Петербург: Лань, 2022 496 с.
- Π 1.3 Станкевич Л. А. Интеллектуальные системы и технологии: учебник и практикум для спо / Л. А. Станкевич. Москва: Юрайт, 2024 478 с

8.2 Дополнительная литература

- Л2.1 Круглов С. П. Микроконвертор ADuC812 [Электронный ресурс]: учебное пособие / Круглов С. П., Ковыршин С. В., Лившиц А. В. Иркутск: ИрГУПС, 2020 88 с.
- Л2.2 Макуха В. К. Микропроцессорные системы и персональные компьютеры: учебное пособие для вузов / В. К. Макуха, В. А. Микерин. Москва: Юрайт, 2024 156 с
- Л2.3 Трипольский П. Э. Микропроцессорная техника в мехатронике и робототехнике [Электронный ресурс] / Трипольский П. Э. Москва: РТУ МИРЭА, 2022 40 с.

8.3 Информационно-образовательные ресурсы

- Э1 ЭБС НИЯУ МИФИ http://library.mephi.ru/
- Э2 ЭБС elibrary http://www.elibrary.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия,

должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к практическим занятиям, семинарам
- Подготовка к контрольным работам
- Выполнение курсового проекта (работы)
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к промежуточному контролю: Экзамен (5 семестр), Курсовая работа (5 семестр)

В течение 5 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену, защите Курсовой работы по дисциплине. Студент на Экзамене, защите Курсовой работы должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): А.Л. Федянин