МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Высшей математики и информационных технологий»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МАТЕМАТИЧЕСКИЕ ПАКЕТЫ ДЛЯ ИНЖЕНЕРНЫХ РАСЧЕТОВ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
5	4	144	0	0	48	36	96	Экз.
Итого	4	144	0	0	48	36	96	

Аннотация

Рабочая программа дисциплины «Математические пакеты для инженерных расчетов» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 современные тенденции развития технического прогресса;
- 3.2 инженерные расчеты для решения поставленных задач;
- 3.3 инструментарий для решения задач проектного и исследовательского характера в сфере профессиональной деятельности;
- 3.4 элементарную базу и их функциональное назначение и устройство, применительно к объектам управления;

2) уметь:

- У.1 применять компьютерную технику и информационные технологии в своей профессиональной деятельности;
 - У.2 четко излагать и защищать результаты профессиональной деятельности;
- У.3 применять методы математического анализа при проведении научных исследований и решении прикладных задач в профессиональной сфере;
 - У.4 применять и производить выбор оборудования систем управления;

3) владеть или быть в состоянии продемонстрировать:

- В.1 навыками использования справочной литературы.
- В.2 навыками анализа режимов работы электроэнергетического оборудования и систем;
- В.3 методами расчета параметров электроэнергетических устройств и электроустановок систем электроснабжения.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Математические пакеты для инженерных расчетов» являются:

обучение студентов основам численных методов решения инженерных и научных задач в интерактивных системах MATHCAD и MATLAB

Основными задачами дисциплины являются:

- овладеть навыками работы в математических пакетах
- дать информацию о возможностях современных численных методов
- овладеть основами вычислений с помощью численных методов

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Математические пакеты для инженерных расчетов» (Б1.В.ДВ.2.1) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
	3-ОПК-4 знать современные информационные технологии и
современных информационных технологий и	принципы их работы
использовать их для решения задач	У-ОПК-4 уметь применять современные информационные
профессиональной деятельности	технологии для решения задач профессиональной деятельности
	В-ОПК-4 владеть навыками использования современных
	информационных технологий
ОПК-14 Способен разрабатывать алгоритмы	3-ОПК-14 знать правила разработки алгоритмов и
и компьютерные программы, пригодные для	компьютерных программ
практического применения	У-ОПК-14 уметь разрабатывать алгоритмы и компьютерные
	программы, пригодные для практического применения. с
	применением современных цифровых программных методов
	В-ОПК-14 владеть навыками разработки алгоритмов и
	компьютерных программ

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Математические пакеты для инженерных расчетов» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **4**, **144 час.**, обучение по дисциплине проходит в **семестре 5**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Основы инженерных расчетов»
- раздел 2 «Аппроксимация и решение уравнений и систем уравнений»
- раздел 3 «Решение дифференциальных уравнений»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No	Поличенование местина	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные ме	Макс. балл	
145	Наименование раздела		Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
		5	семес	тр (18	недель)			
1	Основы инженерных расчетов			12	22	1/ЛР1, 2/ЛР2, 3/ЛР3	12/КИ1, 12/Т1	17
2	Аппроксимация и решение уравнений и систем уравнений			18	26	4/ЛР4, 5/ЛР5, 6/ЛР6, 7/Зд1, 7/Зд2, 8/Зд3	14/КИ2, 14/Т2	20
3 Решение дифференциальных уравнений				18	12	8/ЛР7, 10/ЛР8, 12/ЛР9, 14/ЛР10, 16/ЛР11	16/КИ3, 16/Т3	23
Экзамен					36			40
Итог	го за 5 семестр:			48	96			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
– знать современные информационные технологии и принципы их работы (3-ОПК-4)	1, 2, 3	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2, Зд3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3, Зкзамен (5 сем.)
— уметь применять современные информационные технологии для решения задач профессиональной деятельности (У-ОПК-4)	1, 2, 3	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2, Зд3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3, Зкзамен (5 сем.)

– владеть навыками использования современных информационных технологий (B-OПК-4)	1, 2, 3	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2, Зд3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3, Зкзамен (5 сем.)
 - знать правила разработки алгоритмов и компьютерных программ (3-OПК-14) 	1, 2, 3	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2, Зд3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3
– уметь разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения. с применением современных цифровых программных методов (У-ОПК-14)	1, 2, 3	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2, Зд3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3
 владеть навыками разработки алгоритмов и компьютерных программ (B-OПК-14) 	1, 2, 3	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2, Зд3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3

5.2 Содержание лекционного курса дисциплины

Лекционный курс по дисциплине в соответствии с рабочим учебным планом не предусмотрен.

5.3 Содержание лабораторного практикума

В таблице 3 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 3 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час			
Раздел 1 Основы инженерных расчетов				
1.1 Решение уравнений средствами Mathcad. Численное решение	4			
нелинейных уравнений. Нахождение корней полинома. Решение систем				
уравнений. Символьное решение уравнений.				
1.2 Основы работы с MathCAD. Математические выражения. Операторы.	4			
Типы данных. Функции.				

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
1.3 Символьные вычисления. Выделение выражений для символьных	4
вычислений. Символьные операции. Стиль представления результатов	
вычислений. Операторы вычисления пределов функций.	
Итого по разделу 1:	12
Раздел 2 Аппроксимация и решение уравнений и систем уравнений	
2.1 Исследование разомкнутой линейной системы. Методы анализа	4
одномерной линейной непрерывной системы с помощью среды Matlab	
2.2 Проектирование регулятора для линейной системы. Методы	4
проектирования регулятора для одномерной линейной непрерывной	
системы с помощью среды Matlab.	
2.3 Моделирование систем управления в пакете Simulink. Методы	4
моделирования линейных систем в пакете Simulink.	
2.4 Аппроксимация и решение уравнений и систем уравнений Методы	2
анализа одномерной линейной непрерывной системы с помощью среды	
Matlab	
2.5 Аппроксимация и решение уравнений и систем уравнений. Методы	2
проектирования регулятора для одномерной линейной непрерывной	
системы с помощью среды Matlab	
2.6 Аппроксимация и решение уравнений и систем уравнений. Методы	2
моделирования линейных систем в пакете Simulink	
Итого по разделу 2:	18
Раздел 3 Решение дифференциальных уравнений	
3.1 Моделирование нелинейных систем управления. Методы	2
моделирования нелинейных систем в пакете Simulink.	
3.2 Программирование в среде Matlab. Методы программирования в среде	4
Matlab.	
3.3 Оптимизация нелинейных систем. Методы оптимизации нелинейных	4
систем в среде Matlab.	
3.4 Цифровая реализация непрерывного регулятора. Методы	4
переоборудования непрерывных регуляторов для реализации на цифровом	
компьютере.	
3.5 Notebook: назначение и применение. Создание интерактивной книги.	4
Итого по разделу 3:	18
Всего по лабораторному практикуму дисциплины:	48

5.4 Тематика практических / семинарских занятий

Практические/семинарские занятия в соответствии с рабочим учебным планом не предусмотрены.

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лабораторных работ используются следующие образовательные технологии: ІТ-методы, Работа в команде, Методы проблемного обучения, Обучение на основе опыта, Проектный метод.

Для организации самостоятельной работы используются следующие образовательные технологии: Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

Общее число часов занятий, проводимых в интерактивной форме – 36 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и с	формами контроля их освоения
--	------------------------------

Компетенция	Индикаторы	Аттестационные мероприятия		
	освоения			
ОПК-4	3-ОПК-4	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2,		
		3д3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3,		
		Т3, Зкзамен (5 сем.)		
ОПК-4	У-ОПК-4	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2,		
		3д3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3,		
		Т3, Зкзамен (5 сем.)		
ОПК-4	В-ОПК-4	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2,		
		3д3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3,		
		Т3, Зкзамен (5 сем.)		
ОПК-14	3-ОПК-14	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2,		
		3д3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3		
ОПК-14	У-ОПК-14	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2,		
		3д3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3		
ОПК-14	В-ОПК-14	ЛР1, ЛР2, ЛР3, КИ1, Т1, ЛР4, ЛР5, ЛР6, Зд1, Зд2,		
		3д3, КИ2, Т2, ЛР7, ЛР8, ЛР9, ЛР10, ЛР11, КИ3, Т3		

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 5 семестре:

Вид		Максимальная	Минимальная
	Наименование видов контроля	положительная	положительная
контроля		оценка в баллах	оценка в баллах
	Текущая аттестац	ия	
ЛР1	Лабораторная работа	3	1.8
ЛР2	Лабораторная работа	3	1.8
ЛР3	Лабораторная работа	3	1.8
КИ1	Контроль по итогам	3	1.8
T1	Тестирование	5	3
ЛР4	Лабораторная работа	3	1.8
ЛР5	Лабораторная работа	3	1.8
ЛР6	Лабораторная работа	3	1.8
3д1	Задание (задача)	1	0.6
3д2	Задание (задача)	1	0.6
3д3	Задание (задача)	1	0.6
КИ2	Контроль по итогам	3	1.8
T2	Тестирование	5	3
ЛР7	Лабораторная работа	3	1.8
ЛР8	Лабораторная работа	3	1.8
ЛР9	Лабораторная работа	3	1.8
ЛР10	Лабораторная работа	3	1.8
ЛР11	Лабораторная работа	3	1.8
КИ3	Контроль по итогам	3	1.8
Т3	Тестирование	5	3
	Сумма:	60	36
	Промежуточная аттест		
Экзамен		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	С	I)	Е	F
Оценка по 4-х отлично		хорошо			удовлетворительно		неудовлетворительно
бальной шкале (отл.)		(xop.)		(удовл.)		(неуд.)	
Зачет		Зачтено					Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (5 семестр):

- 1 Источники погрешности. Абсолютная и относительная погрешности.
- 2 Графический метод отделения корней нелинейных уравнений.
- 3 Аналитический метод отделения корней нелинейных уравнений.
- 4 Метод дихотомии решения нелинейных уравнений.
- 5 Метод касательных решения нелинейных уравнений.
- 6 Метод секущих решения нелинейных уравнений.
- 7 Метод Гаусса решения систем линейных уравнений.
- 8 Метод простых итераций решения систем линейных уравнений.
- 9 Постановка задачи интерполяции.
- 10 Интерполяционный полином Лагранжа.
- 11 Интерполяционный полином Ньютона для равных промежутков.
- 12 Постановка задачи аппроксимации функций. Метод наименьших квадратов.
- 13 Формулы численного дифференцирования для первой производной.
- 14 Формулы численного дифференцирования для второй производной.
- 15 Формула прямоугольников.
- 16 Формула трапеций.
- 17 Формула Симпсона.
- 18 Метод Эйлера решения дифференциальных уравнений первого порядка.
- 19 Методы Рунге-Кутты решения дифференциальных уравнений первого порядка.
- 20 Численное решение задачи Коши для системы двух дифференциальных уравнений первого порядка.
- 21 Численное решение задачи Коши для дифференциальных уравнений второго порядка.
- 22 Численное решение задачи Коши для системы двух дифференциальных уравнений второго порядка.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Охорзин В. А. Прикладная математика в системе MATHCAD [Текст]: учебное пособие / В. А. Охорзин Санкт-Петербург: Лань, 2016 349 с.
- Л1.2 Охорзин В. А. Прикладная математика в системе MATHCAD [Электронный ресурс] / Охорзин В. А. Санкт-Петербург: Лань, 2021 352 с.

8.2 Дополнительная литература

- Л2.1 eLIBRARY.RU [Электронный ресурс]: научная электронная библиотека Москва: ООО "РУНЭБ", 2021
- Л2.2 Благовещенский В. В. Компьютерные лабораторные работы по физике в пакете MathCad [Текст]: учебное пособие / В. В. Благовещенский Санкт-Петербург: Лань, 2013 95 с.
- Л2.3 Омельченко В.П. Информатика. Практикум: практикум / Омельченко В.П.; Демидова А.А. Москва: ГЭОТАР-Медиа, 2016 336 с.
- Л2.4 Ракитин В. И. Руководство по методам вычислений и приложения MATHCAD [Электронный ресурс] / Ракитин В. И. Москва: ФИЗМАТЛИТ, 2005 264 с.
- Л2.5 Мельникова Н. А. Численное решение нелинейных уравнений [Электронный ресурс]: методические указания к лабораторной работе / Н. А. Мельникова, М. М. Немирович-Данченко; Министерство науки и высшего образования РФ. ФГАОУ ВО "Национальный исследовательский ядерный университет "МИФИ", Северский

технологический институт НИЯУ МИФИ - Северск: Издательство СТИ НИЯУ МИФИ, 2019 - 20 с.

8.3 Информационно-образовательные ресурсы

Э1 Научная электронная библиотека https://www.elibrary.ru/

Э2 ЭБС НИЯУ МИФИ http://library.mephi.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в лабораториях Информационно-вычислительного центра.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях ИВЦ запрещается находиться в верхней одежде. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Подготовка к лабораторным работам
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к экзамену
- Подготовка к практическим занятиям, семинарам
- Подготовка к промежуточному контролю: Экзамен (5 семестр)

В течение 5 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически

стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): В. Н. Брендаков