МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Высшей математики и информационных технологий»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МЕТОДЫ ТЕОРИИ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
4	3	108	16	16	0	0	76	Зач.
Итого	3	108	16	16	0	0	76	

Аннотация

Рабочая программа дисциплины «Методы теории функций комплексного переменного» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 элементы теории функций комплексного переменного
- 3.2 элементы операционного исчисления
- 3.3 приложения изучаемых разделов к решению профессиональных задач
- 3.4 методы и средства познания для интеллектуального развития и профессиональной компетентности

2) уметь:

- У.1 решать типовые задачи операционного исчисления
- У.2 решать типовые задачи теории функций комплексного переменного
- У.3 применять математические методы для решения практических задач
- У.4 устанавливать границы применимости математических методов
- У.5 проверять и интерпретировать полученные решения
- У.6 выбирать источники информации
- У.7 выявлять свойства элементов системы
- У.8 формулировать выводы по результатам анализа информации

3) владеть или быть в состоянии продемонстрировать:

- В.1 навыками исследования
- В.2 навыками аналитического и численного решения задач
- В.3 выявлением связи и зависимостей между элементами системы, функций и роли элементов в системе

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Методы теории функций комплексного переменного» являются:

- углубление базовой математической подготовки студентов с учетом требований к их профессиональной подготовке

Основными задачами дисциплины являются:

- изучение элементов теории функций комплексного переменного; изучение элементов операционного исчисления; овладение методами операционного решения прикладных задач; формирование навыков исследования.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Методы теории функций комплексного переменного» (Б1.В.ДВ.1.1) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	и наименование индикатора достижения компетенции
естественнонаучные и общеинженерные положения знания, методы математического анализа и моделирования в профессиональной деятельности У-ОПК-1 положения з их примен В-ОПК-1 че¬ского а	уметь применять фундаментальные понятия, я, законы, теории и методы общеинженерных наук для вадач профессиональной деятельности с учетом границ

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Методы теории функций комплексного переменного» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **3**, **108 час.**, обучение по дисциплине проходит в **семестре 4**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Элементы теории функций комплексного переменного»
- раздел 2 «Элементы операционного исчисления»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№	Науманаранна раздала	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные ме	Макс. балл	
145	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
4 семестр (16 недель)								
1	Элементы теории	8	8		38		8/Д31	30

	функций					
	комплексного					
	переменного					
2	Элементы	8	8	38	16/KP1	30
	операционного					
	исчисления					
	Зачет					40
Итог	го за 4 семестр:	16	16	76		100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук, необходимые для решения задач профессиональной деятельности. (3-OПК-1)	1, 2	Д31, КР1, Зачет (4 сем.)
- уметь применять фундаментальные понятия, положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ их применимости. (У-ОПК-1)	1, 2	Д31, КР1, Зачет (4 сем.)
- владеть навыками применения методами математического анализа и моделирования при рассмотрении задач профессиональной деятельности. (B-OПК-1)	1, 2	Д31, КР1, Зачет (4 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Элементы теории функций комплексного переменного	
1.1 Комплексные числа и действия над ними. Различные формы	2
комплексного числа: алгебраическая, тригонометрическая, показательная.	
Переход от одной формы комплексного числа к другой. Арифметические	
операции над комплексными числами, свойств арифметических операций.	
Геометрическое изображение комплексных чисел. Модуль и аргумент	
комплексного числа. Теорема о модуле и аргументе. Свойство модуля	
комплексных чисел. Возведение в степень, извлечение корня.	

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
1.2 Основные элементарные функции комплексного переменного. Элементарные функции комплексного переменного. Степенная функция с натуральным показателем. Степенная функция с произвольным показателем. Показательная и логарифмическая функции. Тригонометрические функции. Формула Эйлера. Гиперболические функции. Обратные тригонометрические и гиперболические функции.	2
1.3 Дифференцирование и интегрирование функции комплексного переменного. Дифференцирование функции комплексного переменного. Правила дифференцирования функций комплексного переменного. Условия Коши-Римана. Аналитические функции и их свойства. Геометрический смысл производной функции комплексного переменного. Интеграл по комплексной переменной, его основные свойства. Интеграл функции комплексного переменного по кусочно-гладкому пути. Теорема Коши. Интегральная формула Коши	2
1.4 Ряды в комплексной плоскости. Степенные ряды. Теорема Абеля. Ряд Тейлора. Разложение функции, представимой интегралом Коши, в ряд Тейлора.	2
Итого по разделу 1:	8
Раздел 2 Элементы операционного исчисления	
2.1 Преобразование Лапласа. Основные теоремы операционного исчисления. Оригиналы и изображения. Теорема об оригиналах и изображениях. Определение преобразования Лапласа. Свойство линейности преобразования Лапласа. Нахождение изображений простейших элементарных функций по Лапласу. Теорема подобия. Теоремы запаздывания и опережения. Теорема смещения. Теорема умножения изображений. Свертка функций и ее свойство. Теорема свертывания оригиналов. Интеграл Дюамеля. Дифференцирование оригинала. Дифференцирование изображения. Интегрирование оригинала. Интегрирование изображения	2
2.2 Решение задачи Коши для линейных ОДУ с постоянными коэффициентами с помощью преобразования Лапласа. Решение задачи Коши линейных ОДУ с постоянными коэффициентами с помощью преобразования Лапласа. Передаточная функция. Интеграл Дюамеля	2
2.3 Решение задачи Коши для линейных ОДУ с постоянными коэффициентами с помощью передаточной функции и интеграла Дюамеля. Решение линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами при нулевых и ненулевых начальных условиях с использованием передаточной функции и интеграла Дюамеля	2
2.4 Решение систем линейных ОДУ с постоянными коэффициентами с помощью преобразования Лапласа. Решение систем двух линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами с помощью преобразования Лапласа	2
Итого по разделу 2:	8
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

Лабораторный практикум в соответствии с рабочим учебным планом не предусмотрен.

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 4.

Таблица 4 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Элементы теории функций комплексного переменного	
1.1 Комплексные числа и действия над ними. Различные формы	2
комплексного числа: алгебраическая, тригонометрическая, показательная.	
Переход от одной формы комплексного числа к другой. Арифметические	
операции над комплексными числами. Геометрическое изображение	
комплексных чисел. Модуль и аргумент комплексного числа. Возведение в	
степень, извлечение корня. Решение квадратного уравнения с	
комплексными корнями.	
1.2 Основные элементарные функции комплексного переменного.	2
Вычисление значений основных элементарных функций комплексного	
переменного. Решение уравнений, содержащих основные элементарные	
функции комплексного переменного	
1.3 Дифференцирование и интегрирование функции комплексного	2
переменного. Действительная и мнимая части функции комплексного	
переменного. Восстановление аналитической функции по её	
действительной или мнимой части. Условие Коши-Римана.	
Дифференцирование функций комплексного переменного. Интеграл	
функции комплексного переменного по кусочно-гладкому пути.	
Интегральная формула Коши	
1.4 Ряды в комплексной плоскости. Степенные ряды. Теорема Абеля. Ряд	2
Тейлора. Разложение функции, представимой интегралом Коши, в ряд	
Тейлора.	
Итого по разделу 1:	8
Раздел 2 Элементы операционного исчисления	
2.1 Нахождение оригиналов и изображений. Разложение изображений на	2
простейшие дроби. Нахождение изображений простейших элементарных	
функций по оригиналам, оригиналов по изображениям с помощью	
преобразования Лапласа	
2.2 Решение задачи Коши для линейных ОДУ с постоянными	2
коэффициентами с помощью преобразования Лапласа. Решение задачи	
Коши линейных ОДУ с постоянными коэффициентами с помощью	
преобразования Лапласа. Передаточная функция. Интеграл Дюамеля	
2.3 Решение задачи Коши для линейных ОДУ с постоянными	2
коэффициентами с помощью передаточной функции и интеграла	
Дюамеля. Решение линейных обыкновенных дифференциальных	
уравнений с постоянными коэффициентами при нулевых и ненулевых	
начальных условиях с использованием передаточной функции и интеграла	
Дюамеля	

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
2.4 Решение систем линейных ОДУ с постоянными коэффициентами операционным методом. Решение систем линейных обыкновенных дифференциальных уравнений с постоянными коэффициентами с помощью преобразования Лапласа	2
Итого по разделу 2:	8
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: Обучение на основе опыта.

При проведении практических занятий используются следующие образовательные технологии: Работа в команде, Обучение на основе опыта, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: Исследовательский метод.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-1	3-ОПК-1	Д31, КР1, Зачет (4 сем.)
ОПК-1	У-ОПК-1	Д31, КР1, Зачет (4 сем.)
ОПК-1	В-ОПК-1	ДЗ1, КР1, Зачет (4 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Зачета.

Аттестация в 4 семестре:

TD.		Максимальная	Минимальная
Вид	Наименование видов контроля	положительная	положительная
контроля		оценка в баллах	оценка в баллах
	Текущая аттестац	ия	
Д31	Домашнее задание	30	18
KP1	Контрольная работа	30	18
	Сумма:	60	36
	Промежуточная аттест	гация	
Зачет		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	С	I)	Е	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)	(xop.)		(удо	вл.)	(неуд.)	
Зачет		Зачтено					Не зачтено

Оценка «*отмично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Зачета (4 семестр):

- 1 Комплексные числа: определение, формы записи
- 2 Действия над комплексными числами
- 3 Теорема о модуле и аргументе комплексного числа
- 4 Дифференцируемость функций комплексного переменного. Условия Коши-Римана. Аналитичность функции
 - 5 Показательная и логарифмическая функции
 - 6 Тригонометрические и гиперболические функции
 - 7 Общая степенная функция
 - 8 Интеграл от функции комплексного переменного
 - 9 Интегральная формула Коши
 - 10 Ряд Тейлора для функции комплексного переменного
 - 11 Оригиналы и изображения. Теорема об оригиналах и изображениях
 - 12 Определение преобразования Лапласа
 - 13 Свойство линейности преобразования Лапласа.
 - 14 Нахождение изображений простейших элементарных функций

- 15 Теорема подобия
- 16 Теорема запаздывания
- 17 Теорема опережения
- 18 Теорема смещения. Свертка функций и ее свойство
- 19 Теорема умножения оригиналов
- 20 Теорема дифференцирования оригинала
- 21 Теорема интегрирования оригинала
- 22 Теорема дифференцирования изображения
- 23 Теорема интегрирования изображения
- 24 Решение дифференциальных уравнений с помощью преобразования Лапласа
- 25 Передаточная функция и ее оригинал. Интеграл Дюамеля
- 26 Решение линейных дифференциальных уравнений с использованием передаточной функции при нулевых и ненулевых начальных условиях
- 27 Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами с помощью преобразования Лапласа

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Эйдерман В. Я. Теория функций комплексного переменного и операционное исчисление: учебное пособие для вузов [Электронный ресурс] / Эйдерман В. Я. Москва: Юрайт, 2024 263 с.
- Л1.2 Пантелеев А. В. Теория функций комплексного переменного и операционное исчисление в примерах и задачах [Электронный ресурс]: учебное пособие / Пантелеев А. В., Якимова А.С. Санкт-Петербург: Лань, 2022 448 с.

8.2 Дополнительная литература

- Л2.1 Бугров Я. С. Высшая математика в 3 т. Т. 3 в 2 книгах. Дифференциальные уравнения. Кратные интегралы. Ряды. Функции комплексного переменного: Учебник Для академического бакалавриата / Бугров Я. С., Никольский С. М. Москва: Юрайт, 2016 507 с
- Л2.2 Калягина В. И. Теория функций комплексного переменного [Электронный ресурс]: руководство для студентов при выполнении типового расчета / В. И. Калягина, Н. А. Мельникова; Министерство образования и науки РФ, Национальный исследовательский ядерный университет "МИФИ", Северский технологический институт филиал НИЯУ МИФИ (СТИ НИЯУ МИФИ) Северск: Изд-во СТИ НИЯУ МИФИ, 2015 49 с.

8.3 Информационно-образовательные ресурсы

- Э1 http://library.mephi.ru Распределенный сводный каталог библиотек институтов НИЯУ МИФИ
- Э2 http://www.ssti.ru/cgi-bin/zgate/zgate?Init+ssti.xml,simple.xsl+rus Электронный каталог библиотеки СТИ
 - Э3 http://www.exponenta.ru образовательный математический сайт
 - Э4 http://univertv.ru образовательный видеопортал

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить

ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к практическим занятиям, семинарам
- Выполнение домашних заданий
- Выполнение индивидуальных заданий
- Подготовка к промежуточному контролю: Зачет (4 семестр)

В течение 4 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Зачету по дисциплине. Студент на Зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Н.А. Мельникова