МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ ПРИВОДОВ МЕХАТРОННЫХ И РОБОТОТЕХНИЧЕСКИХ СИСТЕМ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
5	3	108	32	16	0	0	60	Зач.
Итого	3	108	32	16	0	0	60	

Аннотация

Рабочая программа дисциплины «Основы приводов мехатронных и робототехнических систем» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основные понятия и определения, используемые в мехатронных и робототехнических системах;
- 3.2 перспективы развития мехатронных и робототехнических систем в России и за рубежом;
 - 3.3 основные виды механизмов, используемые в мехатронных и робототехнических;
- 3.4 состав и принцип функционирования отдельных узлов мехатронных и робототехнических систем, требования, предъявляемые к ним;
- 3.5 датчики, используемые в мехатронных и робототехнических системах, их принцип действия и особенности применения.

2) уметь:

- У.1 читать конструкторскую и проектную документацию механических, электрических и электронных узлов мехатронных и робототехнических систем;
 - У.2 обоснованно выбирать тип привода для поставленной задачи;
- У.3 оформлять законченные проектно-конструкторские работы в соответствии с имеющимися стандартами и техническими условиями.

3) владеть или быть в состоянии продемонстрировать:

- В.1 владеть навыками разработки типовых схем работы приводов различных типов;
- В.2 владеть навыками разработки конструкторской и проектной документации с применением средств автоматизированного проектирования.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Основы приводов мехатронных и робототехнических систем» являются:

- получение студентами знаний, умений, навыков и компетенций в области применения электрических, пневматических и гидравлических приводов, входящих в состав мехатронных и робототехнических устройств.

Основными задачами дисциплины являются:

- изучение принципа действия, особенностей применения различных типов приводов.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Основы приводов мехатронных и робототехнических систем» (Б1.Б.3.9) относится к базовой части образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-9 Способен внедрять и осваивать новое	3-ОПК-9 знать основное технологическое оборудование,
технологическое оборудование	порядок действий по его внедрению и принципы его размещения
	в производственной системе.
	У-ОПК-9 уметь выполнять необходимые действия в
	установленном порядке в рамках проведения работ по
	внедрению и освоению нового технологического оборудования.
	В-ОПК-9 владеть навыками выполнения работ по освоению
	нового технологического оборудования.

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Основы приводов мехатронных и робототехнических систем» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **3**, **108 час.**, обучение по дисциплине проходит в **семестре 5**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Введение»
- раздел 2 «Электрические приводы»
- раздел 3 «Пневматические приводы систем мехатроники»
- раздел 4 «Гидравлические исполнительные механизмы и гидроприводы в мехатронных и роботехнических системах»
- раздел 5 «Основные характеристики современных измерительных элементов приводов мехатронных и робототехнических систем»
 - раздел 6 «Механические преобразователи движения»
- **раздел 7** «Сравнительная оценка электрических, гидравлических и пневматических элементов и систем.»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№	Наименование раздела	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час				Аттестационные ме	Макс. балл	
31=	таименование раздела		Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
		5	семес	тр (18	недел	ь)		
1	Введение	2	2		4		2/Д31	5
2	Электрические приводы	12	6		20	5/Д32, 6/Д33, 8/Д34	8/Д35	20
3	Пневматические приводы систем мехатроники	6	2		9		10/Д36	7
4	Гидравлические исполнительные механизмы и гидроприводы в мехатронных и роботехнических системах	4	2		8		12/Д37	7
5	Основные характеристики современных измерительных элементов приводов мехатронных и робототехнических систем	4	2		8		14/Д38	7
6	Механические преобразователи движения	2	2		6		16/Д39	7
7	Сравнительная оценка электрических, гидравлических и пневматических элементов и систем.	2			5		16/KP1	7
	Зачет							40
Итог	го за 5 семестр:	32	16		60			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать основное технологическое оборудование, порядок действий по его внедрению и принципы его размещения в производственной системе. (3-OПК-9)	1, 2, 3, 4, 5, 6, 7	Д31, Д32, Д33, Д34, Д35, Д36, Д37, Д38, Д39, КР1, Зачет (5 сем.)
– уметь выполнять необходимые действия в установленном порядке в рамках проведения работ по внедрению и освоению нового технологического оборудования. (У-ОПК-9)	2, 3, 4, 5, 6,	Д32, Д33, Д34, Д35, Д36, Д37, Д38, Д39, КР1, Зачет (5 сем.)
 владеть навыками выполнения работ по освоению нового технологического оборудования. (B-OПК-9) 	2, 3, 4, 5, 6,	Д32, Д33, Д34, Д35, Д36, Д37, Д38, Д39, КР1, Зачет (5 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Введение	
1.1 Обобщенные структуры и примеры современных приводов	2
мехатронных и робототехнических систем. Примеры мехатронных и	
робототехнических систем, их классификации и требования к приводам.	
Перспективы развития мехатронных и робототехнических систем в России	
и за рубежом.	
Итого по разделу 1:	2
Раздел 2 Электрические приводы	
2.1 Электродвигатели постоянного тока. Принцип работы и устройство	2
электрических машин постоянного тока. Динамические характеристики	
электродвигателей постоянного тока. Достоинства и недостатки	
электродвигателей постоянного тока.	
2.2 Электродвигатели постоянного тока. Электродвигатели с	2
постоянными магнитами. Электродвигатели с обмотками возбуждения.	
Коллекторные двигатели переменного тока. Пуск и торможение	
электродвигателей постоянного тока.	
2.3 Синхронные электрические машины. Вращающееся магнитное поле.	2
Устройство, работа синхронных электрических машин. Достоинства и	
недостатки синхронных электродвигателей.	
2.4 Синхронные электрические машины. Шаговые электродвигатели.	2
2.5 Асинхронные электродвигатели. Регулирование скорости вращения	2
АД. Режимы торможения электродвигателя и способы останова.	
2.6 Устройства коммутациии и защиты. Типовые схемы. Типовые схемы	2
пуска и торможения электродвигателей. Типовые схемы защиты	
электропривода.	

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Итого по разделу 2:	12
Раздел 3 Пневматические приводы систем мехатроники	
3.1 Особенности пневматического привода. Физические основы функционирования пневмосистем. Достоинства и недостатки. Производство сжатого воздуха.	2
3.2 Пневмомоторы. Классификация пневматических моторов. Пластинчатые (шиберные) пневмомоторы. Шестеренные пневмомоторы. Радиально-поршневые пневмомоторы. Турбинные пневмомоторы.	2
3.3 Преобразователи сигналов в мехатронике. Преобразователь силы в давление сжатого воздуха. Преобразователь тока в давление сжатого воздуха. Преобразователь силы в ток. Преобразователь давления сжатого в ток. Преобразователь давления сжатого в перемещение.	2
Итого по разделу 3:	6
Раздел 4 Гидравлические исполнительные механизмы и гидроприводы в и роботехнических системах	мехатронных
4.1 Принцип действия и работа гидравлических исполнительных механизмов. Конструкции гидроприводов (гидродвигателей). Управляющие устройства гидравлических исполнительных механизмов.	2
4.2 Объемные гидравлические передачи вращательного движения. Гидромоторы и гидронасосы. Основы функционирования объемных гидроприводов вращательного движения.	2
Итого по разделу 4:	4
Раздел 5 Основные характеристики современных измерительных элемент мехатронных и робототехнических систем	-
5.1 Общие требования к датчикам, принцип действия, область	2
применения и основные параметры. Параметрические датчики. Потенциометрические, емкостные и индукционные измерители рассогласования. Цифровые датчики линейного и углового положения скорости.	
5.2 Датчики ускорения и скорости. Акселерометры. Конструкция, принцип действия. Обработка информации акселерометров с дискретным выходом.	2
Итого по разделу 5:	4
Раздел 6 Механические преобразователи движения	
6.1 Редукторы. Основные понятия и характеристики зубчатой передачи. Основные понятия и характеристики червячной передачи.	2
Итого по разделу 6:	2
Раздел 7 Сравнительная оценка электрических, гидравлических и пневма элементов и систем.	атических
7.1 Особенности и возможности электрических, пневматических и гидравлических устройств. Классификация элементов систем автоматики по функциональному признаку. Основные характеристики систем автоматики.	2
Итого по разделу 7:	2
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

Лабораторный практикум в соответствии с рабочим учебным планом не предусмотрен.

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 4.

Таблица 4 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Введение	
1.1 Этапы развития теории автоматизированного привода.	2
Функциональные схемы приводов. Места и способы размещения	
электрических и гидравлических приводов в мехатронных и	
робототехнических системах.	
Итого по разделу 1:	2
Раздел 2 Электрические приводы	
2.1 Электродвигатели постоянного тока. Изменение направления	2
вращения в машинах постоянного тока. Регулировка частоты вращения	
электродвигателей постоянного тока. Энкодеры. Сервоприводы.	
Вентильный двигатель.	
2.2 Асинхронные электродвигатели. Устройство, принцип действия,	2
основные характеристики асинхронных двигателей и режимы их работы.	
Асинхронные двигатели с короткозамкнутым ротором с повышенным	
пусковым моментом.	
2.3 Устройства коммутации и защиты электроприводов. Элементы	2
коммутации силовых цепей электроприводов. Элементы защиты силовых	
цепей.	
Итого по разделу 2:	6
Раздел 3 Пневматические приводы систем мехатроники	
3.1 Разновидности пневматических приводов. Поршневые	2
пневматические приводы. Позиционирование пневмоприводов. Поворотные	
пневматические двигатели.	_
Итого по разделу 3:	2
Раздел 4 Гидравлические исполнительные механизмы и гидроприводы в	мехатронных
и роботехнических системах	
4.1 Гидравлические исполнительные механизмы. Основные сведения о	2
гидравлических исполнительных механизмах. Рабочие среды и их влияние	
на показатели привода. Принцип работы гидроприводов. Классификация и	
характеристики объемных приводов. Источники питания гидравлических	
приводов. Насосы подачи смазочно-охлаждающей жидкости	
гидроприводов. Исполнительные двигатели гидроприводов.	2
Итого по разделу 4:	_
Раздел 5 Основные характеристики современных измерительных элемен	тов приводов
мехатронных и робототехнических систем	2
5.1 Основные характеристики измерительных элементов. Вращающиеся	2
трансформаторы (ВТ). Тахогенераторы (постоянного и переменного тока).	

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Итого по разделу 5:	2
Раздел 6 Механические преобразователи движения	
6.1 Редукторы. Основные понятия и характеристики планетарной передачи.	2
Основные понятия и характеристики волновой передачи. Основные понятия	
и характеристики ременной передачи.	
Итого по разделу 6:	2
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: IT-методы, Опережающая самостоятельная работа.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Обучение на основе опыта, Опережающая самостоятельная работа.

Для организации самостоятельной работы используются следующие образовательные технологии: IT-методы, Обучение на основе опыта, Опережающая самостоятельная работа.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия		
	освоения			
ОПК-9	3-ОПК-9	Д31, Д32, Д33, Д34, Д35, Д36, Д37, Д38, Д39, КР1,		
		Зачет (5 сем.)		
ОПК-9	У-ОПК-9	Д32, Д33, Д34, Д35, Д36, Д37, Д38, Д39, КР1,		
		Зачет (5 сем.)		
ОПК-9	В-ОПК-9	Д32, Д33, Д34, Д35, Д36, Д37, Д38, Д39, КР1,		
		Зачет (5 сем.)		

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Зачета.

Аттестация в 5 семестре:

Вид	Наименование видов контроля	Максимальная положительная	Минимальная положительная	
контроля	контроля		оценка в баллах	
	Текущая аттестац	ия		
Д31	Домашнее задание	5	3	
Д32	Домашнее задание	5	3	
Д33	Домашнее задание	5	3	
Д34	Домашнее задание	5	3	
Д35	Домашнее задание	5	3	
Д36	Домашнее задание	7	4.2	
Д37	Домашнее задание	7	4.2	
Д38	Домашнее задание	7	4.2	
Д39	Домашнее задание	7	4.2	
KP1	Контрольная работа	7	4.2	
	Сумма:	60	36	
	Промежуточная аттест	ация		
Зачет		40	24	
	Итого:	100	60	

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	С	I)	Е	F
Оценка по 4-х	отлично	хорошо			удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)	(xop.)			(удовл.)		(неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Зачета (5 семестр):

- 1 Вопросы к зачету (примерный перечень)
- 2 Какие факторы способствовали появлению мехатроники.
- 3 Какое научное направление появилось раньше, робототехника или мехатроника.
- 4 В чем заключается новизна мехатронного подхода.
- 5 Какие системы функционально входят в состав мехатронной системы.

- 6 В чем назначение управляющего комплекса.
- 7 Для чего предназначено исполнительное устройство.
- 8 Какие устройства входят в состав информационно-измерительной системы.
- 9 На какие типы подразделяются мехатронные системы по управлению и участию человека в управлении.
 - 10 Укажите на разновидности автоматических мехатронных систем.
 - 11 Дайте характеристику различных поколений мехатронных систем.
 - 12 Как увеличить скорость передачи информации.
 - 13 Приведите структуру мехатронного модуля движения.
 - 14 Покажите, как устроен пневматический мехатронный модуль движения.
 - 15 В чем преимущества электрогидравлического мехатронного модуля движения.
- 16 Покажите функциональную схему электрогидравлического мехатронного модуля движения.
 - 17 Как классифицируются электрические машины по электрическим параметрам.
- 18 Как соединятся различные источники тока с двигателями постоянного и переменного тока.
 - 19 Какие существуют силовые преобразователи.
- 20 Покажите систему управления двигателем постоянного тока с применением широтно-импульсного преобразователя.
 - 21 Покажите схему управления шаговым двигателем.
 - 22 Покажите схему пьезодвигателя и объясните принцип его работы.
 - 23 Приведите примеры мехатронной техники.
 - 24 Укажите классификацию роботов по назначению.
 - 25 Классификация элементов систем автоматики по функциональному признаку
- 26 Сравнительная оценка электрических, гидравлических и пневматических элементов и систем.
 - 27 Достоинства и недостатки гидравлических преобразователей.
 - 28 Достоинства и недостатки пневматических преобразователей.
 - 29 Требования к рабочей жидкости.
 - 30 Основные характеристики рабочей жидкости.
 - 31 Параметры, характеризующие состояние сжатого воздуха.
 - 32 Диапазоны давлений питания, принятые в пневмоавтоматике.
 - 33 Подготовка воздуха для пневматических систем.
- 34 Классификация пневмоустройств по уровню давления. Системы среднего и низкого давления.
 - 35 Основные функции пневматических систем.
 - 36 Перемещение объектов в пневматических системах
 - 37 Создание усилий в пневматических системах
 - 38 Пневматические системы управления.
 - 39 Пневматические датчики.
 - 40 Основное назначение гидропривода.
 - 41 Вспомогательное гидрооборудование.
 - 42 Объемный насос.
 - 43 Объемный гидравлический двигатель.
 - 44 Состав насосного гидропривода.
 - 45 Гидроаппараты.
 - 46 Рабочие жидкости.
 - 47 Объемная гидромашина, ее основные элементы.
 - 48 Классификация гидромашин.
 - 49 Объемный насос.
 - 50 Объемный гидродвигатель.
 - 51 Распределение жидкости в насосах.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Π 1.1 Сова А. Н. Гидропневмосистемы робототехнического комплекса: учебное пособие для вузов / А. Н. Сова [и др.] ; под редакцией А. Н. Совы. Москва: Юрайт, 2024 212 с
- Л1.2 Шичков Л. П. Основы электрического привода: учебник и практикум для вузов / Л. П. Шичков. Москва: Юрайт, 2024 193 с

8.2 Дополнительная литература

- Л2.1 Авербух М. А. Проектирование электропривода постоянного тока с цифровой системой управления [Электронный ресурс]: учебное пособие / Авербух М. А., Семернин А. Н., Солдатенков А. С., Фальков Г. А. Белгород: БГТУ им. В.Г. Шухова, 2021 118 с.
- Л2.2 Троценко В. В. Системы управления технологическими процессами и информационные технологии: учебное пособие для спо / В. В. Троценко, В. К. Федоров, А. И. Забудский, В. В. Комендантов. Москва: Юрайт, 2024 136 с
- Л2.3 Фролов Ю. М. Проектирование электропривода промышленных механизмов [Электронный ресурс] / Фролов Ю. М., Шелякин В. П. Санкт-Петербург: Лань, 2022 448 с.

8.3 Информационно-образовательные ресурсы

- Э1 Веригин, А. Н. Мехатроника. Инженерный подход [Электронный ресурс] : учебное пособие для вузов / Веригин А. Н.,Незамаев Н. А.,Ишутин А. Г.,Данильчук В. С.,Коробчук М. В.,Ратасеп М. А.,Веригин А. Н. ; Незамаев Н. А., Ишутин А. Г., Данильчук В. С., Коробчук М. В., Ратасеп М. А. Санкт-Петербург : Лань, 2023 .— 644 с. Книга из коллекции Лань Инженерно-технические науки .— ISBN 978-5-507-47913-9 .— .— .
- Э2 Богданова, Д. А. Мехатроника [Электронный ресурс] : учебное пособие для выполнения лабораторных работ / Богданова Д. А.,Вострецова Л. Н.,Иго А. В. Ульяновск : УлГУ, 2021 .— 108 с. Книга из коллекции УлГУ Инженерно-технические науки .— .— .
- ЭЗ Макаров, В. А. Мехатроника промышленных систем [Электронный ресурс] : практикум / Макаров В. А.,Королев Ф. А. Москва : РТУ МИРЭА, 2021 .— 55 с. Книга из коллекции РТУ МИРЭА Инженерно-технические науки .— .— .
- Э4 Распределенный сводный каталог библиотек институтов НИЯУ МИФИ (http://library.mephi.ru)
- Э5 Волкова, М. А. Приводы мехатронных и робототехнических систем: практикум [Электронный ресурс] / Волкова М. А.,Цыпкин В. Н. Москва: РТУ МИРЭА, 2022.— 44 с. Книга из коллекции РТУ МИРЭА Инженерно-технические науки.— .— .
- Э6 Сергеев, А. П. Мехатроника [Электронный ресурс] : курс лекций / Сергеев А. П., Улексин В. А. Волгоград : Волгоградский ГАУ, 2019 .— 220 с. Книга из коллекции Волгоградский ГАУ Ветеринария и сельское хозяйство .— URL:https://e.lanbook.com/book/139215> .—
- Э7 Бурков, А. Ф. Электрические приводы судовых механизмов [Электронный ресурс] : учебник для спо / Бурков А. Ф. Санкт-Петербург : Лань, 2021 .— 348 с. Книга из коллекции Лань Инженерно-технические науки .— ISBN 978-5-8114-6722-8 .— .— .
- 98 Гидравлика, гидравлические машины и гидравлические приводы : Учебник для машиностроительных вузов / Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. М. : Машиностроение, 1970 .— 504 с. : ил.

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить

ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к практическим занятиям, семинарам
- Выполнение домашних заданий
- Подготовка к промежуточному контролю: Зачет (5 семестр)

В течение 5 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Зачету по дисциплине. Студент на Зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Л.Н. Лохтина