МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ СИЛОВЫЕ ЭЛЕКТРОННЫЕ УСТРОЙСТВА В РОБОТОТЕХНИКЕ И МЕХАТРОНИКЕ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
4	5	180	32	16	16	0	116	Экз.
Итого	5	180	32	16	16	0	116	

Аннотация

Рабочая программа дисциплины «Силовые электронные устройства в робототехнике и мехатронике» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 Знание принципов работы, характеристик и параметров силовых электронных компонентов (диоды, тиристоры, транзисторы, преобразователи), включая их функциональные особенности и области применения в мехатронных и робототехнических системах.
- 3.2 Знание методов анализа и расчета электронных схем, используемых в системах автоматического управления, с учетом их энергетических, динамических и точностных характеристик.

2) уметь:

- У.1 Умение анализировать схемы силовых электронных устройств (выпрямители, инверторы, импульсные преобразователи).
- У.2 Умение проводить экспериментальные исследования электронных компонентов и систем, включая настройку, измерение параметров.

3) владеть или быть в состоянии продемонстрировать:

- В.1 Владение методиками расчета статических и динамических характеристик преобразовательных устройств.
- В.2 Владение инженерными компетенциями в области силовой электроники: анализ и верификация электрических схем преобразовательных устройств, построение адекватных математических моделей силовых электронных компонентов и систем

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Силовые электронные устройства в робототехнике и мехатронике» являются:

Формирование у студентов комплексных теоретических знаний и практических навыков в области электронной техники, необходимых для проектирования, анализа и эксплуатации электронных устройств в современных мехатронных и робототехнических системах.

Основными задачами дисциплины являются:

- изучение принципов работы, характеристик и параметров основных электронных компонентов (диоды, транзисторы, микроконтроллеры, датчики);
- освоение методов анализа и расчета электронных схем, используемых в системах автоматического управления;
 - развитие умений сборки, настройки и отладки электронных устройств;
- формирование навыков использования измерительного оборудования (осциллографы, логические анализаторы);

- изучение особенностей применения электронных устройств в системах: Управления двигателями, Обработки сигналов датчиков, Реализации обратных связей;
- развитие способности выбирать электронные компоненты для конкретных задач мехатроники.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Силовые электронные устройства в робототехнике и мехатронике» (Б1.Б.3.7) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные	3-ОПК-1 знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук,
знания, методы математического анализа и моделирования в профессиональной	необходимые для решения задач профессиональной деятельности.
деятельности	У-ОПК-1 уметь применять фундаментальные понятия,
	положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ их применимости.
	В-ОПК-1 владеть навыками применения методами математического анализа и моделирования при рассмотрении задач профессиональной деятельности.
УКЕ-1 Способен использовать знания	3-УКЕ-1 знать: основные законы естественнонаучных
естественнонаучных дисциплин, применять	дисциплин, методы математического анализа и моделирования,
методы математического анализа и моделирования, теоретического и	теоретического и экспериментального исследования У-УКЕ-1 уметь: использовать математические методы в
экспериментального исследования в поставленных задачах	технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи
	математической статистики; решать типовые расчетные задачи В-УКЕ-1 владеть: методами математического анализа и
	моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами
	обработки экспериментальных данных, методами работы с прикладными программными продуктами

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Силовые электронные устройства в робототехнике и мехатронике» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **5**, **180 час.**, обучение по дисциплине проходит в **семестре 4**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Введение и основы силовой электроники»
- раздел 2 «Полупроводниковые приборы»
- раздел 3 «Применение полупрводниковых приборов»
- раздел 4 «Преобразовательные устройства мехатроных систем»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

№ Наименование раздела		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкост час			боту	Аттестационные мероприятия		Макс. балл
		Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
	4 семестр (16				недел	ь)		
1	Введение и основы силовой электроники	8			8			
2	Полупроводниковые приборы	8	4	10	36	3/ЛР1, 5/ЛР2, 7/ЛР3, 9/ЛР4	9/KP1	25
3	Применение полупрводниковых приборов	10	12	6	30	13/ЛР5, 15/ЛР6, 8/Д31, 12/Д32	16/KP2	35
4	Преобразовательные устройства мехатроных систем	6			6			
Экзамен					36			40
Итог	Итого за 4 семестр:		16	16	116			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук, необходимые для решения задач профессиональной деятельности. (3-OПК-1)	1, 2, 3, 4	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32, КР2, Экзамен (4 сем.)

– уметь применять фундаментальные понятия, положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ их применимости. (У-ОПК-1)	1, 2, 3, 4	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32, КР2, Экзамен (4 сем.)
- владеть навыками применения методами математического анализа и моделирования при рассмотрении задач профессиональной деятельности. (B-OIIK-1)	1, 2, 3, 4	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32, КР2, Экзамен (4 сем.)
- знать: основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования (3-УКЕ-1)	1, 2, 3, 4	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32, КР2, Экзамен (4 сем.)
- уметь: использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи (У-УКЕ-1)	1, 2, 3, 4	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32, КР2, Экзамен (4 сем.)
– владеть: методами математического анализа и моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами обработки экспериментальных данных, методами работы с прикладными программными продуктами (B-УКЕ-1)	1, 2, 3, 4	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32, КР2, Экзамен (4 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Введение и основы силовой электроники	
1.1 Физические основы работы полупроводниковых приборов. Роль и место электроники в современной робототехнике и мехатонике. Краткие сведения о теории строения атома. Собственная электронная и дырочная	4
проводимость.	
1.2 Электропроводность полупроводников. Электрические переходы. Примесная электропроводность полупроводника. Дрейфовый ток. Диффузия носителей заряда в полупроводниках. Электрические переходы: p-n-переход; переход «металл-полупроводник»; переход между полупроводниками одного типа электропроводимости, отличающиеся различной концентрацией примесей; гетеропереходы.	4
Итого по разделу 1:	8

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 2 Полупроводниковые приборы	
2.1 Полупроводниковые диоды. Общие сведения о диодах. Выпрямительные диоды, импульсные диоды, туннельные диоды, обращенные диоды, диоды Шоттки, варикапы, стабилитроны, стабисторы. Статические и динамические параметры диодов.	2
2.2 Биполярные транзисторы. Структура и основные режимы работы. Физические процессы в биполярном транзисторе. Схемы включения транзистора. Статические характеристики биполярного транзистора. Транзистор как линейный четырехполюсник. Режимы работы транзистора.	2
2.3 Полевые транзисторы. Полевые транзисторы (с управляющим p-n— переходом, с изолированным затвором со встроенным каналом и индуцированным каналом): принцип действия, параметры, характеристики. Сравнение МДП- и биполярного транзистора.	2
2.4 Тиристоры. Устройство и принцип действия динистора и тиристора, основные характеристики. Естественная и принудительная коммутация тиристоров. Запираемые тиристоры: физика процесса включения и выключения. Симисторы.	2
Итого по разделу 2:	8
Раздел 3 Применение полупрводниковых приборов	
3.1 Выпрямители. Однофазные неуправляемые выпрямители. Выпрямители: общие определения, понятия, классификация, терминология. Структурная обобщённая схема выпрямителя, виды и особенности нагрузок. Управляемые выпрямители (УВ). Определение УВ. Способы регулирования выпрямленного напряжения. Принцип работы УВ с регулированием в самом выпрямителе.	4
3.2 Инверторы. Классификация инверторов. Ведомые сетью (зависимые) инверторы. Автономные инверторы.	4
3.3 Оптоэлектронные полупроводниковые приборы. Основы фотоэлектроники. Приборы с внешним фотоэффектом: фотоэлемент, фотоэлектронный умножитель — принцип действия, характеристики, параметры, область применения. Приборы с внутренним фотоэффектом: фоторезисторы, фотодиоды, фототранзисторы, фототиристоры — принцип действия, характеристики, параметры, область применения. Светодиоды. Оптоэлектронные устройства.	2
Итого по разделу 3:	10
Раздел 4 Преобразовательные устройства мехатроных систем	
4.1 Импульсные преобразователи. Импульсные преобразователи постоянного тока. Импульсные регуляторы переменного напряжения.	3
4.2 Преобразователи частоты (ПЧ). Преобразователи частоты (ПЧ), назначение и принцип действия.	3
Итого по разделу 4:	6
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Полупроводниковые приборы	
2.1 Изучение программного продукта Multisim 11, LabVIEW. Вводное	2
занятие, Изучение программного продукта Multisim, LabVIEW	
2.2 Исследование характеристик полупроводниковых диодов.	2
Исследование вольтамперных характеристик (ВАХ) выпрямительного и	
импульсного полупроводниковых диодов.	
2.3 Исследование характеристик стабилитрона. Исследование	2
характеристик полупроводникового стабилитрона.	
2.4 Исследование характеристик тиристора. Исследование	2
вольтамперной характеристики тиристора и определение его параметров.	
2.5 Исследование характеристик биполярного транзистора. Получение	2
входной характеристики и семейства выходных характеристик биполярного	
транзистора в схеме с общим эмиттером.	
Итого по разделу 2:	10
Раздел 3 Применение полупрводниковых приборов	
3.1 Исследование не управляемых выпрямительных устройств.	4
Исследование работы однополупериодного и мостового не управляемого	
выпрямителя.	
3.2 Исследование управляемых выпрямительных устройств.	2
Исследование работы однополупериодного и мостового управляемого	
выпрямителя.	
Итого по разделу 3:	6
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Полупроводниковые приборы	
2.1 Расчёт цепей, содержащих полупроводниковые компоненты.	4
Итого по разделу 2:	4
Раздел 3 Применение полупрводниковых приборов	
3.1 Расчет и проектирование не управляемых выпрямителей. Расчет	4
параметров не управляемых однофазного мостового выпрямителя	
3.2 Расчет управляемых выпрямителей. Расчет параметров однофазного	4
мостового выпрямителя Проектирование трехфазного выпрямителя (схема	
Ларионова)	
3.3 Многофазные выпрямители. Трехфазные выпрямители (схема	4
Ларионова), основные схемы и их принцип действия.	

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Итого по разделу 3:	12
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: Опережающая самостоятельная работа.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Опережающая самостоятельная работа, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: Работа в команде, Опережающая самостоятельная работа, Проектный метод.

Для организации самостоятельной работы используются следующие образовательные технологии: Работа в команде, Опережающая самостоятельная работа, Проектный метод.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия	
	освоения		
ОПК-1	3-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32,	
		КР2, Экзамен (4 сем.)	
ОПК-1	У-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32,	
		КР2, Экзамен (4 сем.)	
ОПК-1	В-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32,	
		КР2, Экзамен (4 сем.)	
УКЕ-1	3-УКЕ-1	1 ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32,	
		КР2, Экзамен (4 сем.)	
УКЕ-1	У-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32,	
		КР2, Экзамен (4 сем.)	
УКЕ-1	В-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ЛР5, ЛР6, Д31, Д32,	
		КР2, Экзамен (4 сем.)	

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не

менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 4 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах
	Текущая аттестаці	ия	
ЛР1	Лабораторная работа	5	3
ЛР2	Лабораторная работа	5	3
ЛР3	Лабораторная работа	5	3
ЛР4	Лабораторная работа	5	3
KP1	Контрольная работа	5	3
ЛР5	Лабораторная работа	5	3
ЛР6	Лабораторная работа	5	3
Д31	Домашнее задание	10	6
Д32	Домашнее задание	10	6
KP2	Контрольная работа	5	3
	Сумма:	60	36
Промежуточная аттестация			
Экзамен		40	24
	Итого:	100	60

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	A	В	C	D		Е	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)		(xop.)		(удо	вл.)	(неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отмично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (4 семестр):

1 Каковы основные задачи и области применения силовых электронных устройств в мехатронике и робототехнике?

- 2 Перечислите основные элементы силовых электронных схем (диоды, тиристоры, транзисторы). Их назначение и ключевые характеристики.
- 3 Какие методы охлаждения используются в силовых электронных устройствах? Их преимущества и недостатки.
 - 4 Назовите основные элементы защиты силовых ключей. Принципы их работы.
- 5 Дайте классификацию выпрямителей. Чем отличаются управляемые и неуправляемые выпрямители?
- 6 Опишите принцип работы однофазного и трёхфазного неуправляемого выпрямителя. Приведите их временные диаграммы.
 - 7 В чем отличие собственного и примесного полупроводника?
- 8 В чем состоит преимущество примесных полупроводников по сравнению с проводниками (металлами и их сплавами), обеспечившее развитие полупроводниковой техники?
 - 9 Назовите виды носителей зарядов.
 - 10 Что такое p-n переход какие виды их бывают?
 - 11 Что такое смещение р-п перехода?
 - 12 Какие виды пробоев Вы знаете?
 - 13 Поясните переходные процессы при смещении р-п перехода.
 - 14 Назначение различных видов диодов.
- 15 Нарисуйте схему простейшего однополупериодного выпрямителя (неуправлемого).
- 16 Постройте временные диаграммы токов и напряжений в однополупериодном выпрямителе (неуправляемого).
 - 17 Нарисуйте схему простейшего мостового выпрямителя (неуправляемого).
- 18 Нарисуйте схему простейшего стабилизатора напряжения. Укажите назначение элементов.
 - 19 Принцип действия биполярного транзистора.
 - 20 Что такое ключевой режим работы транзистора и каковы его преимущества?
 - 21 Нарисуйте схему простейшего мостового выпрямителя (управляемого).
- 22 Постройте временные диаграммы токов и напряжений в однополупериодном выпрямителе (управляемого).
 - 23 Назовите основные параметры транзисторов.
 - 24 Принципы действия полевых транзисторов.
 - 25 Характеристики и параметры полевых транзисторов.
 - 26 Устройство и принцип действия тиристора.
 - 27 Как протекает процесс включения и выключения тиристора?
 - 28 Принципы действия фотоэлектронных приборов.
 - 29 Схемы включения и применение фотоэлектронных приборов.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Розанов Ю. К. Силовая электроника: учебник и практикум для вузов / Ю. К. Розанов, М. Г. Лепанов; под редакцией Ю. К. Розанова. Москва: Юрайт, 2024 206 с
- Л1.2 Фролов В. Я. Силовая полупроводниковая элементная база. Технология производства. Конструктивные решения [Электронный ресурс]: учебное пособие для вузов / Фролов В. Я.,Сурма А. М.,Васерина К. Н.,Черников А. А.; Сурма А. М., Васерина К. Н., Черников А. А. Санкт-Петербург: Лань, 2023 228 с.

8.2 Дополнительная литература

- Л2.1 Белоус А. И. Полупроводниковая силовая электроника; Текст / А. И. Белоус, С. А. Ефименко, А. С. Турцевич Москва: Техносфера, 2013 214 с.
- Π 2.2 Комиссаров Ю. А. Основы электротехники, микроэлектроники и управления: учебное пособие для вузов / Ю. А. Комиссаров, Л. С. Гордеев, Д. П. Вент, Г. И. Бабокин. Москва: Юрайт, 2024 607 с
- Π 2.3 Новожилов О. П. Электротехника и электроника: учебник для вузов / О. П. Новожилов. Москва: Юрайт, 2024 653 с

8.3 Информационно-образовательные ресурсы

- Э1 http://www.library.ssti.ru/ сайт библиотеки Северского технологического института НИЯУ МИФИ
 - Э2 http://library.mephi.ru/- сайт научной библиотеки НИЯУ МИФИ

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к контрольным работам
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к экзамену
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Выполнение домашних заданий
- Выполнение индивидуальных заданий
- Подготовка к промежуточному контролю: Экзамен (4 семестр)

В течение 4 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Е.В. Бейерлейн