МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Машины и аппараты химических и атомных производств»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ПРИКЛАДНАЯ МЕХАНИКА

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
3	4	144	16	16	0	0	112	Экз.
Итого	4	144	16	16	0	0	112	

Аннотация

Рабочая программа дисциплины «Прикладная механика» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основы расчетов на прочность типовых деталей и узлов общего назначения при простейших видах деформаций и способах приложения внешних нагрузок;
- 3.2 стандарты ЕСКД, технические условия и другие нормативные материалы, используемые при разработке технической документации;
- 3.3 достижения науки и техники в области проектирования типовых деталей и узлов машин (механизмов) общего назначения

2) уметь:

- У.1 использовать полученные знания для оценки механической прочности простейших типовых деталей и узлов машин (механизмов) общего назначения;
- У.2 пользоваться компьютерной техникой и ПО в режиме пользователя при проектных разработках простейших типовых деталей и узлов машин (механизмов) общего назначения;

3) владеть или быть в состоянии продемонстрировать:

- В.1 работы на ЭВМ с использованием пакетов прикладных программ по расчету и проектированию простейших типовых деталей и узлов машин (механизмов) общего назначения;
- В.2 оформления основной проектно-конструкторской документации согласно стандартам ЕСКД.

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Прикладная механика» являются:

овладение современными методами расчета, с помощью которых ведется инженерное проектирование, ознакомление с основами конструирования на примере приводов машин и механизмов (конвейеры, транспортеры, дробилки, смесители и т.п.).

Основными задачами дисциплины являются:

- привитие навыков расчета, проектирования и конструирования типовых деталей машин и их сборочных единиц;
- закрепление навыков работы с научно-технической информацией при разработке конструкторской документации согласно стандартам ЕСКД, начиная с технического задания и заканчивая рабочим проектом

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Прикладная механика» (Б1.Б.3.6) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен применять естественнонаучные и общеинженерные	3-ОПК-1 знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук,
знания, методы математического анализа и моделирования в профессиональной	необходимые для решения задач профессиональной деятельности.
деятельности	У-ОПК-1 уметь применять фундаментальные понятия, положения, законы, теории и методы общеинженерных наук для
	решения задач профессиональной деятельности с учетом границ их применимости.
	В-ОПК-1 владеть навыками применения методами математи-
	че¬ского анализа и моделирования при рассмотрении задач профессиональной деятельности.
УК-1 Способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач	3-УК-1 Знать: методики сбора и обработки информации; актуальные российские и зарубежные источники информации в сфере профессиональной деятельности; метод системного анализа
	У-УК-1 Уметь: применять методики поиска, сбора и обработки информации; осуществлять критический анализ и синтез информации, полученной из разных источников
	В-УК-1 Владеть: методами поиска, сбора и обработки, критического анализа и синтеза информации; методикой системного подхода для решения поставленных задач

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Прикладная механика» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **4**, **144 час.**, обучение по дисциплине проходит в **семестре 3**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Сопротивление материалов»
- раздел 2 «Механические передачи. Детали машин»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No	Наименование раздела	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные ме	Макс. балл	
145		Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
	3 семестр (18				неделі	ь)		
1	Сопротивление	9	9		34	4/PΓ31, 6/PΓ32,	11/KP1	35
	материалов					6/PΓ33, 8/PΓ34, 10/PΓ35, 10/T1		
2 Механические передачи. Детали машин		7	7		42	10/РГ36, 12/РГ37, 14/РГ38, 16/РГ39, 16/РГ310	17/PΓ31 1	25
Экзамен			•		36			40
Итог	го за 3 семестр:	16	16		112			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения компетенции	Номера разделов	Аттестационные мероприятия
— знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук, необходимые для решения задач профессиональной деятельности. (3-ОПК-1)	1, 2	КР1, РГ36, РГ37, РГ38, РГ39, РГ310, РГ311, Экзамен (3 сем.)
- уметь применять фундаментальные понятия, положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ их применимости. (У-ОПК-1)	1, 2	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, РГ36, РГ37, РГ38, РГ39, РГ310, РГ311
- владеть навыками применения методами математического анализа и моделирования при рассмотрении задач профессиональной деятельности. (B-OПК-1)	undefined	Экзамен (3 сем.)
– Знать: методики сбора и обработки информации; актуальные российские и зарубежные источники информации в сфере профессиональной деятельности; метод системного анализа (3-УК-1)	1, 2	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, КР1, РГ36, РГ37, РГ39, РГ310, РГ311, Экзамен (3 сем.)
– Уметь: применять методики поиска, сбора и обработки информации; осуществлять критический анализ и синтез информации, полученной из разных источников (У-УК-1)	1, 2	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, РГ36, РГ37, РГ38, РГ39, РГ310, РГ311

 Владеть: методами поиска, сбора и обработки, критического анализа и синтеза информации; методикой системного подхода для решения поставленных задач (В-УК-1) 	1, 2	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, КР1, РГ36, РГ37, РГ39, РГ310, РГ311, Экзамен (3 сем.)
--	------	--

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Сопротивление материалов	
1.1 Введение в дисциплину. Реальный объект и расчётная схема. Силы внешние и внутренние. Метод сечений. Напряжения, деформации и перемещения. Закон Гука и принцип независимости действия сил.	2
1.2 Растяжение и сжатие. Внутренние силы и напряжения при растяжениисжатии. Закон Гука и удлинения стержня. Диаграммы растяжения и сжатия. Основные механические характеристики материала. Коэффициент запаса прочности. Условие прочности при растяжении-сжатии. Допускаемые напряжения.	2
1.3 Сдвиг и кручение. Деформации и напряжения при сдвиге. Закон Гука и условие прочности при сдвиге (срезе). Деформации и напряжения при кручении. Закон Гука при кручении. Условия прочности и жесткости при кручении.	1
1.4 Изгиб стержней. Построение эпюр поперечных сил и изгибающих моментов. Напряжения при чистом изгибе. Условие прочности при изгибе. Условие жесткости.	2
1.5 Сложные деформации.	2
Итого по разделу 1:	9
Раздел 2 Механические передачи. Детали машин	
2.1 Механические передачи (МП). Особенности расчета деталей машин	2
2.2 Валы и оси. Валы и оси	2
2.3 Подшипники. Подбор подшипников качения по статической и динамической грузоподъемности	2
2.4 Муфты. Муфты	1
Итого по разделу 2:	7
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

Лабораторный практикум в соответствии с рабочим учебным планом не предусмотрен.

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблине 4.

Таблица 4 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Сопротивление материалов	
1.1 Метод сечений – основной метод сопротивления материалов.	2
1.2 Растяжение-сжатие. Условие прочности и жесткости при	2
растяжении.	
1.3 Сдвиг (срез) и смятие. Расчеты соединений.	1
1.4 Расчеты на кручение. Условие прочности и жесткости при	1
кручении.	
1.5 Изгиб. Определение внутренних усилий и расчеты на прочность.	2
1.6 Сложное сопротивление.	1
Итого по разделу 1:	9
Раздел 2 Механические передачи. Детали машин	
2.1 Определение передаточных отношений и КПД последовательно	1
соединенных механизмов. Выбор электродвигателя.	
2.2 Расчет цилиндрической прямозубой и косозубой передачи на	2
прочность по контактным напряжениям .	
2.3 Примеры расчета цилиндрической и конической зубчатой передачи	2
с помощью ЭВМ.	
2.4 Примеры подбора подшипников качения по статической и	1
динамической грузоподъемности Подбор муфт, расчет соединений.	
2.5 Расчет межосевого расстояния у ременных и цепных передач.	1
Итого по разделу 2:	7
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: IT-методы, Case-study.

При проведении практических занятий используются следующие образовательные технологии: Работа в команде, Проектный метод, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Опережающая самостоятельная работа.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-1	3-ОПК-1	КР1, РГ36, РГ37, РГ38, РГ39, РГ310, РГ311,
		Экзамен (3 сем.)
ОПК-1	У-ОПК-1	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, РГ36, РГ37,
		РГ38, РГ39, РГ310, РГ311
ОПК-1	В-ОПК-1	Экзамен (3 сем.)
УК-1	3-УК-1	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, КР1, РГ36,
		РГ37, РГ39, РГ310, РГ311, Экзамен (3 сем.)
УК-1	У-УК-1	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, РГ36, РГ37,
		РГ38, РГ39, РГ310, РГ311
УК-1	В-УК-1	РГ31, РГ32, РГ33, РГ34, РГ35, Т1, КР1, РГ36,
		РГ37, РГ39, РГ310, РГ311, Экзамен (3 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 3 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах					
	Текущая аттестац	ия						
РГ31	Расчетно-графическое задание	2	1.2					
РГ32	Расчетно-графическое задание	2	1.2					
РГ33	Расчетно-графическое задание	2	1.2					
РГ34	Расчетно-графическое задание	2	1.2					
РГ35	Расчетно-графическое задание	2	1.2					
T1	Тестирование	10	6					
KP1	Контрольная работа	15	9					
РГ36	Расчетно-графическое задание	2	1.2					
РГ37	Расчетно-графическое задание	2	1.2					
ЪL38	Расчетно-графическое задание	2	1.2					
РГ39	Расчетно-графическое задание	2	1.2					
РГ310	Расчетно-графическое задание	2	1.2					
РГ311	Расчетно-графическое задание	15	9					
	Сумма:	60	36					
Промежуточная аттестация								
Экзамен		40	24					
	Итого:	100	60					

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по	100-90	89–85	84–75	74–70	69–65	64–60	ниже 60

дисциплине							
Оценка (ECTS)	A	В	C	I)	Е	F
Оценка по 4-х отлично хорошо		удовлетворительно			неудовлетворительно		
бальной шкале	(отл.)		(xop.)		(удовл.)		(неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (3 семестр):

- 1 Предмет изучения и основные задачи курса сопротивления материалов.
- 2 Расчётная схема.
- 3 Силы внешние и внутренние. Классификация видов деформирования.
- 4 Понятие о напряжениях, перемещениях и деформациях. Основные принципы сопротивления материалов.
 - 5 Метод сечений и порядок действий (показать на рисунке).
 - 6 Шесть внутренних усилий и их аналитические выражения.
 - 7 Диаграмма растяжения низкоуглеродистой стали.
- 8 Участки диаграммы. Характеристики прочности: формулы и определения. Характер разрушения образца.
- 9 Явление наклёпа. Характеристики пластичности материала. Понятие пластичности и хрупкости; классификация материалов.
 - 10 Диаграмма сжатия стали. Диаграммы растяжения и сжатия чугуна.
- 11 Растяжение и сжатие. Напряжения при растяжении и сжатии, расчёты на прочность.
 - 12 Закон Гука при растяжении и сжатии.
- 13 Модуль упругости материала; его численная величина, физический и геометрический смысл; способы его определения.
 - 14 Формула для абсолютной продольной деформации.
- 15 Абсолютная и относительная поперечная деформация при растяжении и сжатии (рисунок).
- 16 Коэффициент Пуассона, его физический смысл, численное значение и способы определения.
- 17 Геометрические характеристики плоских сечений: площадь; статические, осевые, полярные и центробежные моменты инерции; центр тяжести.
 - 18 Деформации при растяжении-сжатии, расчёт на жесткость.
 - 19 Напряжения при кручении круглого вала. Расчёт на прочность при кручении.
 - 20 Деформации при кручении круглого вала. Расчёт на жёсткость при кручении.
 - 21 Эпюра касательных напряжений и закон парности.
 - 22 Полярный момент сопротивления. Рациональное сечение вала.

- 23 Изгиб. Определение внутренних силовых факторов.
- 24 Дифференциальные зависимости при изгибе.
- 25 Напряжения при чистом изгибе.
- 26 Напряжения при поперечном изгибе. Расчёты на прочность при изгибе.
- 27 Косой изгиб. Определение напряжений и расчёт на прочность.
- 28 Внецентренное растяжение (сжатие). Определение напряжений и расчёт на прочность.
 - 29 Изгиб с кручением. Определение напряжений и расчёты на прочность.
 - 30 Усталостная прочность. Предел выносливости.
 - 31 Диаграмма предельных амплитуд.
 - 32 Факторы, влияющие на усталостную прочность.
 - 33 Реальный объект и расчётная схема
 - 34 Силы внешние и внутренние. Уравнения равновесия
 - 35 Напряжения, деформации и перемещения
 - 36 Закон Гука и принцип независимости действия сил
 - 37 Внутренние силы и напряжения при растяжении-сжатии
 - 38 Закон Гука и удлинения стержня
 - 39 Статически определимые и статически неопределимые системы
 - 40 Испытание материалов на растяжение-сжатие
 - 41 Диаграммы растяжения и сжатия
 - 42 Основные механические характеристики материала
- 43 Коэффициент запаса. Условие прочности при растяжении-сжатии. Допускаемые напряжения
 - 44 Деформации и напряжения при сдвиге
 - 45 Закон Гука и условие прочности при сдвиге
 - 46 Явления среза и смятия при сдвиге
 - 47 Чистый сдвиг и его особенности
 - 48 Деформации и напряжения при кручении
 - 49 Закон Гука при кручении
 - 50 Условия прочности и жесткости при кручении
 - 51 Построение эпюр поперечных сил и изгибающих моментов
 - 52 Напряжения при чистом изгибе. Формула Навье
 - 53 Условие прочности при изгибе
 - 54 Перемещения при изгибе. Условие жесткости
 - 55 Порядок решения задачи сложных деформаций
 - 56 Гипотезы прочности и теория прочности Мора
 - 57 Изгиб и кручение
 - 58 Условия прочности при сложных деформациях
 - 59 Соединения резьбовые, шпоночные и сварные
 - 60 Назначение, классификация, основные параметры МП
 - 61 Зубчатые передачи (ЗП). Классификация
 - 62 Геометрия и кинематика ЗП
 - 63 Критерии работоспособности и расчета ЗП
 - 64 Контактная прочность зубьев ЗП
 - 65 Изгибная прочность зубьев ЗП
 - 66 Конические ЗП
 - 67 Силы в ЗП
 - 68 Преимущества, недостатки и применение ЗП
 - 69 Червячные передачи (ЧП)
 - 70 Геометрия, кинематика и КПД ЧП
 - 71 Критерии работоспособности и расчета ЧП
 - 72 Силы в зацеплении ЧП

- 73 Расчет прочности зубьев ЧП
- 74 Тепловой расчет, охлаждение и смазка ЧП
- 75 Преимущества, недостатки и применение ЧП
- 76 Фрикционные, ременные и цепные передачи
- 77 Конструкция и принцип действия
- 78 Преимущества, недостатки и применение
- 79 Подшипники скольжения (ПС)
- 80 Общие сведения и классификация ПС
- 81 Условия работы и виды разрушения ПС
- 82 Конструкция и материалы ПС
- 83 Подшипники качения (ПК)
- 84 Общие сведения и классификация ПК
- 85 Основные критерии работоспособности и расчета (подбора) ПК
- 86 Подбор ПК по статической грузоподъемности
- 87 Подбор ПК по динамической грузоподъемности
- 88 Общие сведения, назначение и классификация муфт
- 89 Муфты глухие
- 90 Виды несоосности валов
- 91 Муфты компенсирующие жесткие
- 92 Муфты упругие
- 93 Муфты управляемые или сцепные
- 94 Муфты самоуправляемые или автоматические

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- m Л1.1 Зиомковский В. М. Прикладная механика: Учебное пособие Для вузов / Зиомковский В. М., Троицкий И. В. ; под науч. ред. Вешкурцева В.И. Москва: Юрайт, 2019 286 с
- Л1.2 Прикладная механика [Текст]: учебное пособие для вузов / В. Т. Батиенков [и др.] М.: Инфра-М, 2014 277, [11] с.
- Л1.3 Сборник задач по сопротивлению материалов [учебное пособие для втузов] [Текст] / Н. М. Беляев [и др.]; под ред. В. К. Качурина М.: Наука, 2014 432 с.
- Л1.4 Феодосьев В. И. Сопротивление материалов: учебник для вузов / В. И. Феодосьев М.: Изд-во МГТУ, 2010 590, [2] с.

8.2 Дополнительная литература

- Л2.1 Жуков В. Г. Механика. Сопротивление материалов [Электронный ресурс] / Жуков В. Г. Санкт-Петербург: Лань, 2021 416 с.
- Л2.2 Молотников В. Я. Механика конструкций. Теоретическая механика. Сопротивление материалов [Электронный ресурс] / Молотников В. Я. Санкт-Петербург: Лань, 2021 608 с.
- Л2.3 Бродский В. М. Кручение [Электронный ресурс]: практическое руководство / В. М. Бродский , Г. В. Шляхова Северск: Изд-во СТИ НИЯУ МИФИ, 2016 36 с.
- Л2.4 Митрофанов Ю. А. Расчет вала на жесткость, статическую прочность и сопротивление усталости с помощью ПЭВМ [Электронный ресурс]: учебное пособие / Ю. А. Митрофанов; Министерство образования и науки РФ, Национальный исследовательский ядерный университет "МИФИ", Северский технологический институт филиал НИЯУ МИФИ (СТИ НИЯУ МИФИ) Северск: Изд-во СТИ НИЯУ МИФИ, 2015 54 с.

8.3 Информационно-образовательные ресурсы

- Э1 Электронная библиотека Северского технологического института НИЯУ МИФИ http://www.library.ssti.ru/
 - Э2 Электронная научная библиотека НИЯУ МИФИ http://library.mephi.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

Расчетно-графическое задание оформляется в соответствии с требованиями кафедры.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к практическим занятиям, семинарам
- Выполнение расчетных работ
- Подготовка к промежуточному контролю: Экзамен (3 семестр)

В течение 3 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): В.М. Бродский