МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ЭЛЕКТРОННЫЕ КОМПОНЕНТЫ РОБОТИЗИРОВАННЫХ СИСТЕМ

НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
7	2	72	16	0	16	0	40	Зач.
Итого	2	72	16	0	16	0	40	

Аннотация

Рабочая программа дисциплины «Электронные компоненты роботизированных систем» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 основные типы и классификацию первичных измерительных преобразователей (датчиков);
 - 3.2 принципы преобразования информации в датчиках;
 - 3.3 статические и динамические характеристики датчиков;
- 3.4 методы формирования выходных электрических информативных сигналов датчиков;
 - 3.5 способы усиления и линеаризации выходных сигналов датчиков;
 - 3.6 методики минимизации ошибок, обусловленных различными помехами;
- 3.7 основные схемы формирования сигналов генераторных измерительных пре¬образователей;
 - 3.8 принципы сопряжения датчиков с системами сбора и обработки информации;
- 3.9 методики разработки принципиальных схем аппаратных средств интеллектуальных датчиков.

2) уметь:

- У.1 вести анализ и разработку структурных и принципиальных схем аппаратных средств систем сбора информации;
- У.2 выбирать датчик, исходя из требований технического задания и контролируемой физической или технической величины;
- У.3 правильно выбирать схему включения датчика с целью максимизации выходного информационного сигнала;
 - У.4 выполнять расчет и синтез схем нормировки и линеаризации сигнала датчиков.

3) владеть или быть в состоянии продемонстрировать:

- В.1 обосновывать технические требования к датчикам по общему техническому заданию;
- В.2 оптимально использовать возможности датчиков для решения различного типа задач (измерение временных параметров сигналов, формирование сигналов с заданными временными характеристиками, измерение напряжения, сбор, хранение и передача данных, управление исполнительными устройствами).

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Электронные компоненты роботизированных систем» являются:

изучение основ функционирования сенсоров в робототехнических системах, а также принципов построения систем сбора информации на основе первичных измерительных преобразователей и получение практических навы-ков в выборе типов датчиков и схем нормировки, усиления и первичной обра-ботке сигнала при измерении физических и механических величин.

Основными задачами дисциплины являются:

- формирование у студентов теоретических знаний в области назначение датчиков при построении подсистем измерения систем автоматизации различных производственных и робототехнических систем, физических принципов основных первичных преобразователей датчиков;
- изучение основных типов робототехнических сенсоров и конструкции датчиков различных типов;
- изучения условий работы датчиков применительно к системам различного на значения;
- ознакомление с метрологическими характеристиками датчиков и способами доведения их величин до требуемых;
- формирование навыков подключения и обработки результатов с робототехнических сенсоров.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Электронные компоненты роботизированных систем» (Б1.Б.3.16) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-9 Способен внедрять и осваивать новое	З-ОПК-9 знать основное технологическое оборудование,
технологическое оборудование	порядок действий по его внедрению и принципы его размещения в производственной системе.
	У-ОПК-9 уметь выполнять необходимые действия в
	установленном порядке в рамках проведения работ по
	внедрению и освоению нового технологического оборудования.
	В-ОПК-9 владеть навыками выполнения работ по освоению
	нового технологического оборудования.

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Электронные компоненты роботизированных систем» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения **«очная»** по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в зачетных единицах -2, 72 час., обучение по дисциплине проходит в семестре 7.

Дисциплина (модуль) содержит разделы:

- **раздел 1** «Раздел 1»
- **раздел 2** «РАздел 2»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

Ma	Научускоромую постоло	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные ме	Макс. балл	
140	№ Наименование раздела		Практ. занятия	Лабор. работы	100		Аттестация раздела (нед/ форма)	за раздел
	7 семестр (19 недел					ь)		
1	Раздел 1	10		10	25	4/ЛР1, 6/ЛР2, 8/ЛР3, 10/ЛР4		20
2	РАздел 2	6		6	15	12/ЛР5, 14/ЛР6, 16/ЛР7	16/KP1, 16/T1	40
	Зачет							40
Итог	Итого за 7 семестр:			16	40			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать основное технологическое оборудование, порядок действий по его внедрению и принципы его размещения в производственной системе. (3-OПК-9)	1, 2	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Т1, Зачет (7 сем.)
- уметь выполнять необходимые действия в установленном порядке в рамках проведения работ по внедрению и освоению нового технологического оборудования. (У-ОПК-9)	1, 2	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Т1, Зачет (7 сем.)
владеть навыками выполнения работ по освоению нового технологического оборудования. (B-OПК-9)	1, 2	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Т1, Зачет (7 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Раздел 1	
1.1 Метрологические характеристики датчиков. Назначение, и основные	4
элементы датчиков, теоретические ограничения достоверности при	
получении информации; основные принципы измерения; основы	
метрологии и обеспечения единства измерений; основные характеристики и	
требования, предъявляемые к датчикам.	
1.2 Виды сигналов. Согласующие и механические компоненты	2
датчиков. Виды сигналов. Согласующие и механические компоненты	
датчиков. Помехи и способы ослабления помех; назначение и принципы	
построения фильтров, согласующих усилителей	
1.3 Цифровые системы измерений. АЦП. Обработка сигнала с датчика.	2
Аналоговые и дискретные протоколы передачи сигналов, принципы	
построения и метрологические характеристики АЦП, примеры построения и	
основные технические характеристики элементов передачи сигналов.	
1.4 Способы и протоколы передачи информации от датчиков к	2
информационно¬-измерительным и управляющим системам. Способы и	
протоколы передачи информации от датчиков к информационно-	
измерительным и управляющим системам	
Итого по разделу 1:	10
Раздел 2 РАздел 2	
2.1 Позиционирование робота. Контактные датчики. Датчики ближней и	2
дальней зоны. Дальномеры. Навигационные системы. Физические	
принципы работы и построения резистивный, индуктивных, емкостных и	
оптических датчиков.	
2.2 Сенсорная часть привода. Датчики тока и напряжения. Датчики	2
угловой скорости и угла поворота.	
2.3 Силомоментное очувствление. Датчики проскальзывания	2
Итого по разделу 2:	6
Всего по теоретическому разделу дисциплины:	16

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час	
Раздел 1 Раздел 1		
1.1 Обработка сигнала с датчика. Обработка сигнала с датчика	4	
1.2 Изучение датчиков ближней зоны. Изучение датчиков ближней зоны	2	
1.3 Изучение датчиков дальней зоны. Изучение датчиков дальней зоны	2	

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
1.4 Изучение контактных датчиков. Изучение контактных датчиков	2
Итого по разделу 1:	10
Раздел 2 РАздел 2	
2.1 Изучение датчиков тока и напряжения. Изучение датчиков тока и	2
напряжения	
2.2 Изучение датчика угловой скорости и угла поворота. Изучение	2
датчика угловой скорости и угла поворота	
2.3 Изучение датчика проскальзывания. Изучение датчика	2
проскальзывания	
Итого по разделу 2:	6
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Практические/семинарские занятия в соответствии с рабочим учебным планом не предусмотрены.

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: Опережающая самостоятельная работа, Поисковый метод.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Обучение на основе опыта, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: Работа в команде, Обучение на основе опыта, Опережающая самостоятельная работа.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-9	3-ОПК-9	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Т1,
		Зачет (7 сем.)
ОПК-9	У-ОПК-9	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Т1,
		Зачет (7 сем.)
ОПК-9	В-ОПК-9	ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, ЛР6, ЛР7, КР1, Т1,
		Зачет (7 сем.)

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Зачета.

Аттестация в 7 семестре:

Вид	Наименование видов контроля	Максимальная положительная	Минимальная положительная	
контроля		оценка в баллах	оценка в баллах	
	Текущая аттестац	ия		
ЛР1	Лабораторная работа	8	4.8	
ЛР2	Лабораторная работа	4	2.4	
ЛР3	Лабораторная работа	4	2.4	
ЛР4	Лабораторная работа	4	2.4	
ЛР5	Лабораторная работа	4	2.4	
ЛР6	Лабораторная работа	4	2.4	
ЛР7	Лабораторная работа	4	2.4	
KP1	Контрольная работа	13	7.8	
T1	Тестирование	15	9	
	Сумма:	60	36	
Промежуточная аттестация				
Зачет		40	24	
	Итого:	100	60	

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ЕСТЅ)	A	В	С	Ι)	Е	F
Оценка по 4-х	отлично	хорошо		удовлетво	рительно	неудовлетворительно	
бальной шкале	(отл.)	(xop.)		(удовл.)		(неуд.)	
Зачет	Зачтено					Не зачтено	

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как

правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Зачета (7 семестр):

- 1 Понятие «датчик», назначение, основные элементы, пассивные и активные методы получения измерительной информации
- 2 Метрологические характеристики датчиков: коэффициент преобразования, нелинейность, стабильность, влияние внешних факторов на датчик.
 - 3 Цифровые системы измерений
 - 4 Виды сигналов.
 - 5 Позиционирование робота.
 - 6 Теоретические и практические ограничения точности датчиков.
- 7 Неопределённость измерения, типы неопределённости, методы оценки неопределённости.
 - 8 Датчик как четырехполюсник, взаимодействие датчика с окружающей средой.
- 9 Искажения информации при преобразовании информации о быстроизменяющихся процессах.
- 10 Методы преобразования информации в датчиках: пассивные и активные датчики; прямое преобразование, балансная схема, компенсационная схема.
- 11 Резистивные датчики, физические принципы работы, основные характеристики, пример применения.
- 12 Ёмкостные датчики, физические принципы работы, основные характеристики, пример применения.
- 13 Индуктивные датчики, физические принципы работы, основные характеристики, пример применения.
- 14 Индукционные (генераторные) датчики (преобразователи), физические принципы работы, основные характеристики, пример применения.
- 15 Оптические датчики, физические принципы работы, основные характеристики, пример применения.
- 16 Понятие «помехи» виды помех, способы защиты от помех, электромагнитная совместимость.
- 17 Термоэлектрические помехи: физическая природа возникновения, методы ослабления.
 - 18 Помехи от токов утечки: физическая природа возникновения, методы ослабления.
- 19 Помехи от влияние электрических полей (ёмкостная наводка): физическая природа возникновения, методы ослабления.
- 20 Помехи от влияние магнитных полей (индуктивные), физическая природа возникновения, методы ослабления.
- 21 Электронные аналоговые компоненты датчиков, входные цепи: назначение, принципы построения.
- 22 Схемы возбуждения ёмкостных и индуктивных преобразователей: назначение, принципы построения.
 - 23 Протоколы передачи аналоговых сигналов от датчиков.
- 24 Первичное преобразование информации: фильтрация сигналов, интегрирование и дифференцирование аналоговых сигналов, выделение среднего и средне квадра тичного значения сигнала.
- 25 Аналогово-цифровой преобразователь, типы АЦП, основные характеристики, влияние АЦП на измерительную информацию.
 - 26 Протоколы передачи дискретных сигналов от датчиков.
- 27 Упругие (механические) элементы датчиков: назначение, принципы конструирования, основные характеристики.

- 28 Датчики тока, применяемые в электроприводе: назначение, физические принципы работы, основные характеристики.
- 29 Датчики напряжения, применяемые в электроприводе: назначение, физические принципы работы, основные характеристики.
- 30 Датчики угла поворота/расстояния: назначение, физические принципы работы, основные характеристики.
- 31 Датчики давления жидкости/газа: назначение, физические принципы работы, основные характеристики.
- 32 Датчики скорости потока жидкости/газа: назначение, физические принципы работы, основные характеристики.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Кузнецов Э. В. Основы электроники и электрические измерения: учебник и практикум для вузов / Э. В. Кузнецов, Е. А. Куликова, П. С. Культиасов, В. П. Лунин; под общей редакцией В. П. Лунина. Москва: Юрайт, 2024 275 с
- Π 1.2 Кузовкин В. А. Электротехника и электроника: учебник для вузов / В. А. Кузовкин, В. В. Филатов. Москва: Юрайт, 2024 433 с
- Л1.3 Миленина С. А. Электротехника, электроника и схемотехника: учебник для вузов / С. А. Миленина, Н. К. Миленин ; под редакцией Н. К. Миленина. Москва: Юрайт, 2024 450 с

8.2 Дополнительная литература

- Л2.3 Сулимов Ю.И. Электронные промышленные устройства / Ю.И. Сулимов Томск: ТУСУР, 2012 126 с.
- Π 2.4 Ургапова Γ . Б. Детали мехатронных модулей роботов и их конструирование [Электронный ресурс]: лабораторный практикум / Ургапова Γ . Б.,Чеканина Е. А., Н. Т. Москва: РТУ МИРЭА, 2021 36 с.

8.3 Информационно-образовательные ресурсы

- Э1 Образовательный портал СТИ НИЯУ МИФИhttps://edu.ssti.ru/
- Э2 ЭБС НИЯУ МИФИhttp://library.mephi.ru/
- ЭЗ ЭБС издательства «Лань»http://e.lanbook.com/
- Э4 ЭБС elibraryhttp://www.elibrary.ru/
- Э5 ЭБС IBOOKShttp://ibooks.ru/
- Э6 ЭБС Юрайтhttps://urait.ru/
- Э7 ЭБС "Консультант студента. Электронная библиотека технического вуза"http://www.studentlibrary.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;

8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Самостоятельное изучение тем (вопросов) теоретической части курса
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к промежуточному контролю: Зачет (7 семестр)

В течение 7 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Зачету по дисциплине. Студент на Зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Е.С. Логинова