МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭЛЕКТРОПРИВОДА

НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.03.06 Мехатроника и робототехника НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Разработка роботизированных систем для атомной промышленности Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
6	5	180	32	16	16	0	116	Экз., КР
Итого	5	180	32	16	16	0	116	

Аннотация

Рабочая программа дисциплины «Математическое моделирование электропривода» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 способы построения моделей систем электропривода технические требования, предъявляемые к системам электропривода
- 3.2 методы сравнительной оценки характеристик переходных процессов электропривода

2) уметь:

- У.1 проводить исследования режимов работы электропривода
- У.2 создавать математические модели электропривода, удовлетворяющие техническим требованиям
 - У.3 выбирать модели электропривода с оптимальными техническими решениями

3) владеть или быть в состоянии продемонстрировать:

- В.1 основами математического моделирования систем электропривода
- В.2 применением методов моделирования для сравнительного анализа характеристик электропривода
 - В.З навыками определения оптимального варианта модели системы электропривода

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Математическое моделирование электропривода» являются:

формирование основных научно-практических, общесистемных знаний и профессиональных компетенций в области моделирования и исследования электроприводов и систем управления ими

Основными задачами дисциплины являются:

изучение вопросов применения различных способов и средств моделирования электроприводов и систем управления ими

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Математическое моделирование электропривода» (Б1.Б.3.15) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-14 Способен разрабатывать алгоритмы	3-ОПК-14 знать правила разработки алгоритмов и

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
и компьютерные программы, пригодные для	компьютерных программ
практического применения	У-ОПК-14 уметь разрабатывать алгоритмы и компьютерные
	программы, пригодные для практического применения. с
	применением современных цифровых программных методов
	В-ОПК-14 владеть навыками разработки алгоритмов и
	компьютерных программ
УКЕ-1 Способен использовать знания	3-УКЕ-1 знать: основные законы естественнонаучных
естественнонаучных дисциплин, применять	дисциплин, методы математического анализа и моделирования,
методы математического анализа и	теоретического и экспериментального исследования
моделирования, теоретического и	У-УКЕ-1 уметь: использовать математические методы в
экспериментального исследования в	технических приложениях, рассчитывать основные числовые
поставленных задачах	характеристики случайных величин, решать основные задачи
	математической статистики; решать типовые расчетные задачи
	В-УКЕ-1 владеть: методами математического анализа и
	моделирования; методами решения задач анализа и расчета
	характеристик физических систем, основными приемами
	обработки экспериментальных данных, методами работы с
	прикладными программными продуктами

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Математическое моделирование электропривода» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **5**, **180 час.**, обучение по дисциплине проходит в **семестре 6**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Моделирование электроприводов»
- раздел 2 «Системы управления электроприводом»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные мероприятия		Макс. балл
145	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
		6	семес	тр (16	неделі	ь)		
1	Моделирование электроприводов	16	16		21	3/Д31, 8/Д32		28
2	2 Системы управления электроприводом			16	16	10/ЛР1, 12/ЛР2, 14/ЛР3, 15/ЛР4, 16/ЛР5		32
Курсовая работа Экзамен					43			
					36			40
Итог	то за 6 семестр:	32	16	16	116			100

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
 - знать правила разработки алгоритмов и компьютерных программ (3-ОПК-14) 	1, 2	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6 сем.), Курсовая работа
– уметь разрабатывать алгоритмы и компьютерные программы, пригодные для практического применения. с применением современных цифровых программных методов (У-ОПК-14)	1, 2	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6 сем.), Курсовая работа
 владеть навыками разработки алгоритмов и компьютерных программ (B-OПК-14) 	1, 2	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6 сем.), Курсовая работа
- знать: основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования (3-УКЕ-1)	1, 2	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6 сем.), Курсовая работа
- уметь: использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи (У-УКЕ-1)	1, 2	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6 сем.), Курсовая работа

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

	Трудоемкость
Содержание разделов / тематика разделов	разделов/тем,
	ауд. час
Раздел 1 Моделирование электроприводов	
1.1 Понятие математического моделирования.	2
1.2 Метод передаточных функций для построения моделей систем	2
электроприводов.	
1.3 Передаточные функции и модели двигателя постоянного тока независимого возбуждения.	2
1.4 Математическая модель и передаточные функции силового преобразователя.	2
	2
1.5 Передаточные функции элементов электропривода и структуры замкнутых систем.	2
1.6 Метод переменных состояния для построения моделей систем электропривода.	4
1.7 Решение уравнений состояния.	2
Итого по разделу 1:	16
Раздел 2 Системы управления электроприводом	
2.1 Регулирование координат электропривода.	4
2.2 Разомкнутые системы управления электроприводом.	4
2.3 Замкнутые системы управления электроприводом.	4
2.4 Микропроцессорные системы управления электроприводом.	4
Итого по разделу 2:	16
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
---	-------------------------------------

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 2 Системы управления электроприводом	
2.1 Моделирование линейной системы управления УВ-ДПТ.	4
2.2 Моделирование механической части электропривода.	4
2.3 Моделирование системы двухзонного регулирования УВ-ДПТ.	4
2.4 Моделирование торможения прямого и реостатного пуска ДПТ.	2
2.5 Моделирование торможения прямого и реостатного пуска АДФР.	2
Итого по разделу 2:	16
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Моделирование электроприводов	
1.1 Уравнение движения приведенного механизма.	4
1.2 Расчет параметров системы подчиненного регулирования.	2
1.3 Настройка регуляторов системы подчиненного регулирования.	4
1.4 Оптимизированные системы электропривода постоянного и	6
переменного токов.	
Итого по разделу 1:	16
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

В соответствии с рабочим учебным планом предусмотрено выполнить: Курсовая работа (6 семестр).

Курсовая работа включает в себя математическое моделирование системы технологического процесса дозирования сыпучих материалов.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: Методы проблемного обучения, Обучение на основе опыта, Поисковый метод, Исследовательский метод.

При проведении лабораторных работ используются следующие образовательные технологии: Работа в команде, Case-study, Методы проблемного обучения, Обучение на основе опыта, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: Работа в команде, Методы проблемного обучения, Обучение на основе опыта,

Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: Работа в команде, Методы проблемного обучения, Обучение на основе опыта, Опережающая самостоятельная работа, Проектный метод, Поисковый метод, Исследовательский метод, Другие методы.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между формируемыми компетенциями и формами контроля их освоения:

Компетенция Индикаторы		Аттестационные мероприятия		
	освоения			
ОПК-14	3-ОПК-14	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6		
		сем.), Курсовая работа		
ОПК-14	У-ОПК-14	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6		
		сем.), Курсовая работа		
ОПК-14	В-ОПК-14	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6		
		сем.), Курсовая работа		
УКЕ-1	3-УКЕ-1	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6		
		сем.), Курсовая работа		
УКЕ-1	У-УКЕ-1	Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6		
		сем.), Курсовая работа		
УКЕ-1 В-УКЕ-1		Д31, Д32, ЛР1, ЛР2, ЛР3, ЛР4, ЛР5, Экзамен (6		
		сем.), Курсовая работа		

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 6 семестре:

Вид контроля	Наименование видов контроля	Максимальная положительная оценка в баллах	Минимальная положительная оценка в баллах	
	Текущая аттестац	ИЯ		
Д31	Домашнее задание	12	7.2	
Д32	Домашнее задание	16	9.6	
ЛР1	Лабораторная работа	8	4.8	
ЛР2	Лабораторная работа	8	4.8	
ЛР3	Лабораторная работа	8	4.8	
ЛР4	Лабораторная работа	4	2.4	

ЛР5	Лабораторная работа	4	2.4						
	Сумма:	60	36						
Промежуточная аттестация									
Экзамен		40	24						
	Итого:	100	60						

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
дисциплине	100 70	07 05	01 75	71 70	07 03	01 00	пиже оо
Оценка (ECTS)	A	В	С	Ι)	E	F
Оценка по 4-х	отлично	хорошо			удовлетворительно		неудовлетворительно
бальной шкале	(отл.)		(xop.)		(удо	вл.)	(неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отпично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (6 семестр):

- 1 Моделирование структурной схемы электрического привода
- 2 Моделирование уравнения движения электропривода
- 3 Математическое моделирование механической части электропривода
- 4 Математическая модель приведённого момента инерции
- 5 Математическая модель приведённого момента нагрузки
- 6 Моделирование механических характеристик двигателей и исполнительных органов
- 7 Графическое построение переходных процессов при линейных механических характеристиках двигателя и исполнительного органа
- 8 Компьютерное моделирование переходных процессов при линейных механических характеристиках двигателя и исполнительного органа
- 9 Компьютерное моделирование переходных процессов при нелинейном динамическом моменте 0 Особенности регулирования параметров электропривода
 - 10 Основные показатели регулирования скорости электропривода
 - 11 Электрические схемы включения двигателей постоянного тока
- 12 Математическое моделирование естественной механической характеристики двигателя постоянного тока

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Голубева Н. В. Математическое моделирование систем и процессов [Электронный ресурс] / Голубева Н. В. Санкт-Петербург: Лань, 2021 192 с.
- Л1.2 Семенов А. Г. Математическое и компьютерное моделирование [Электронный ресурс]: практикум / Семенов А. Г., Печерских И. А. Кемерово: КемГУ, 2019 237 с.
- Π 1.3 Серебряков А. С. Автоматика: учебник и практикум для вузов / А. С. Серебряков, Д. А. Семенов, Е. А. Чернов ; под общей редакцией А. С. Серебрякова. Москва: Юрайт, 2024 476 с
- Л1.4 Стельмашонок Е. В. Моделирование процессов и систем: учебник и практикум для вузов / Е. В. Стельмашонок, В. Л. Стельмашонок, Л. А. Еникеева, С. А. Соколовская; под редакцией Е. В. Стельмашонок. Москва: Юрайт, 2024 304 с

8.2 Дополнительная литература

- Π 2.1 Балабанов Π . В. Программирование робототехнических систем [Электронный ресурс]: учебное пособие / Балабанов Π . В. Тамбов: ТГТУ, 2018 84 с.
- Л2.2 Рачков М. Ю. Пневматические системы автоматики: учебное пособие для вузов / М. Ю. Рачков. Москва: Юрайт, 2024 264 с
- Π 2.3 Чернусь Π . Π . Моделирование мехатронных систем [Электронный ресурс]: практическое пособие / Чернусь Π . Π ., Чернусь Π . Π . Санкт-Петербург: БГТУ "Военмех" им. Π . Π . Устинова, 2018 54 с.
- Π 2.4 Шичков Л. П. Электрический привод: учебник и практикум для вузов / Л. П. Шичков. Москва: Юрайт, 2024 355 с

8.3 Информационно-образовательные ресурсы

- Э1 ЭБС НИЯУ МИФИ http://library.mephi.ru/
- Э2 ЭБС elibrary http://www.elibrary.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в лабораториях Информационно-вычислительного центра.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях ИВЦ запрещается находиться в верхней одежде. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала

- Подготовка к практическим занятиям, семинарам
- Оформление отчетов по лабораторным работам
- Выполнение индивидуальных заданий
- Выполнение курсового проекта (работы)
- Подготовка к промежуточному контролю: Экзамен (6 семестр), Курсовая работа (6 семестр)

В течение 6 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену, защите Курсовой работы по дисциплине. Студент на Экзамене, защите Курсовой работы должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): С.В. Ляпушкин