МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Электрооборудования и автоматизации технологических процессов»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ОСНОВЫ ТЕОРИИ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ

НАПРАВЛЕНИЕ ПОДГОТОВКИ 15.03.06 Мехатроника и робототехника НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ Разработка роботизированных систем для атомной промышленности Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
5	5	180	32	16	16	16	116	Экз., КР
Итого	5	180	32	16	16	16	116	

Аннотация

Рабочая программа дисциплины «Основы теории автоматического управления» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

3.1 классификацию систем управления в электроэнергетике. Знать методь математического описания систем в дифференциальной, операторной и частотной форме.

2) уметь:

- У.1 формулировать задачи в области электроэнергетики и мехатроники, анализировать и решать их с использованием всех требуемых и доступных ресурсов
- У.2 самостоятельно анализировать и решать практические задачи в сфере проектирования системы управления.

3) владеть или быть в состоянии продемонстрировать:

- В.1 применять инженерные знания и компьютерные технологии, анализа, расчета при решении задач автоматического управления в области электроэнергетики и мехатроники.
- В.2 использовать современные технические средства и компьютерные программы для коммуникации, презентации, составление отчетов

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Основы теории автоматического управления» являются:

Формирование компетенций использования методов анализа и моделирования электрических цепей и мехатронных систем

Основными задачами дисциплины являются:

Изучение режимов работы электронных устройств различных типов, использование знаний их режимов работы и характеристик для построения электротехнических систем

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Основы теории автоматического управления» (Б1.Б.3.13) - Общепрофессиональный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен применять	З-ОПК-1 знать фундаментальные понятия, определения,
естественнонаучные и общеинженерные	положения, законы, теории и методы общеинженерных наук,
знания, методы математического анализа и	необходимые для решения задач профессиональной
моделирования в профессиональной	деятельности.

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
деятельности	У-ОПК-1 уметь применять фундаментальные понятия,
	положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ
	их применимости.
	В-ОПК-1 владеть навыками применения методами математи-
	четского анализа и моделирования при рассмотрении задач
	профессиональной деятельности.
УКЕ-1 Способен использовать знания	3-УКЕ-1 знать: основные законы естественнонаучных
естественнонаучных дисциплин, применять	дисциплин, методы математического анализа и моделирования,
методы математического анализа и	теоретического и экспериментального исследования
моделирования, теоретического и	У-УКЕ-1 уметь: использовать математические методы в
экспериментального исследования в	технических приложениях, рассчитывать основные числовые
поставленных задачах	характеристики случайных величин, решать основные задачи
	математической статистики; решать типовые расчетные задачи
	В-УКЕ-1 владеть: методами математического анализа и
	моделирования; методами решения задач анализа и расчета
	характеристик физических систем, основными приемами
	обработки экспериментальных данных, методами работы с
	прикладными программными продуктами

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Основы теории автоматического управления» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения «**очная**» по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в **зачетных единицах** – **5**, **180 час.**, обучение по дисциплине проходит в **семестре 5**.

Дисциплина (модуль) содержит разделы:

- раздел 1 «Статический режим»
- раздел 2 «Динамический режим»
- раздел 3 «Частотные характеристики элементов и САУ. Устойчивость мехатронных систем»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No. However and the second		Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные мероприятия		Макс. балл
145	№ Наименование раздела		Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел
5 семестр (18 недель)					ь)			
1	Статический режим	10	4	6	30	1/ЛР1, 3/ЛР2, 5/ЛР3		18
2	Динамический режим	10	4	2	16	7/ЛР4		7
3	Частотные характеристики элементов и САУ. Устойчивость мехатронных систем	12	8	8	34	15/Д31, 16/КР1, 11/ЛР5, 15/ЛР6, 16/КР2		35
	Курсовая работа							
Экзамен		1	T	36			40	
Итого за 5 семестр: 32 16		16	116			100		

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
- знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук, необходимые для решения задач профессиональной деятельности. (3-OПК-1)	1, 2, 3	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР5, КР2, Экзамен (5 сем.), Курсовая работа
- уметь применять фундаментальные понятия, положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ их применимости. (У-ОПК-1)	1, 2, 3	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2, Экзамен (5 сем.), Курсовая работа
- владеть навыками применения методами математиче¬ского анализа и моделирования при рассмотрении задач профессиональной деятельности. (B-OПК-1)	1, 2, 3	ЛР1, ЛР2, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2, Экзамен (5 сем.), Курсовая работа
- знать: основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования (3-УКЕ-1)	1, 2, 3	ЛР1, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2, Экзамен (5 сем.), Курсовая работа

- уметь: использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи (У-УКЕ-1)	1, 2, 3	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР6, КР2, Экзамен (5 сем.), Курсовая работа
- владеть: методами математического анализа и моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами обработки экспериментальных данных, методами работы с прикладными программными продуктами (В-УКЕ-1)	1, 2, 3	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2, Экзамен (5 сем.), Курсовая работа

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 – Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Статический режим	
1.1 Основные понятия и определения. Основные понятия и определения	2
ТАУ в области мехатронных систем.Предмет ТАУ. Основные понятия и	
термины, объект управления и регулирования, регулируемые величины,	
регуляторы и другие. Этапы развития САУ и их теории. Классификация	
САУ. 1.2 Задачи управления. Задачи управления. Мехатронные системы	2
	2
1.3 Принципы управления. Принципы управления мехатронных систем	2
1.4 Понятие передаточной функции объекта. Понятие передаточной	2
функции объекта. Физический смысл. Преобразование Лапласа	
1.5 Статический режим САУ. Статический режим САУ	2
Итого по разделу 1:	10
Раздел 2 Динамический режим	
2.1 Преобразования структурных схем. Типовые динамические звенья,	2
принципы их выделения. Передаточные функции и структурные схемы	
мехатронных систем. Структурные схемы, методы их составления. Правила	
преобразования структурных схем при различных соединениях звеньев.	
2.2 Математические уравнения динамических режимов. Математические	2
уравнения динамических режимов	
2.3 Составление и решение операторных уравнений Методы	2
составления и решение операторных уравнений.	
2.4 Характеристическое уравнение. Характеристическое уравнение.	2
Физический смысл. Получение.	
2.5 Типовые воздействия в САУ Типовые воздействия в САУ.	2
Итого по разделу 2:	10

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 3 Частотные характеристики элементов и САУ. Устойчивость мех	атронных
систем	
3.1 Частотные характеристики элементов и САУ. Частотные	2
характеристики разомкнутых и замкнутых систем, методы их построения и	
экспериментального получения.	
3.2 Амплитудно-фазовая частотная характеристика.	2
3.3 Логарифмические частотные характеристики. Расчет и построение	2
логарифмической частотной характеристики	
3.4 Типовые линейные звенья. Характеристики типовых линейных	2
звеньев	
3.5 Устойчивость линейных САУ. Понятие устойчивости линейных САУ	2
3.6 Частотные критерии устойчивости. Критерий Михайлова. Критерий	2
Найквиста. Критерий Гувица. Корневые крмтерии устойчивости	
Итого по разделу 3:	12
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час	
Раздел 1 Статический режим		
1.1 Статические характеристики САУ. Построение и исследование	2	
статических характеристик САУ		
1.2 Исследование типовых динамических звеньев систем управления.	2	
Исследование типовых динамических звеньев систем управления		
1.3 Коррекция стационарных систем автоматического управления.	2	
Показатели качества САУ		
Итого по разделу 1:	6	
Раздел 2 Динамический режим		
2.1 Качество стационарных систем автоматического управления.	2	
Качество стационарных систем автоматического управления		
Итого по разделу 2:	2	
Раздел 3 Частотные характеристики элементов и САУ. Устойчивость мехатронных систем		
3.1 Исследование устойчивости САУ. Исследование устойчивости САУ	4	
3.2 Частотные характеристики стационарных систем. Частотные	4	
характеристики стационарных систем		
Итого по разделу 3:	8	
Всего по лабораторному практикуму дисциплины:	16	

5.4 Тематика практических / семинарских занятий

Тематика практических / семинарских занятий и их трудоемкость представлена в таблице 5.

Таблица 5 – Тематика и трудоемкость практических / семинарских занятий

Перечень практических / семинарских занятий по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Статический режим	
1.1 Статические характеристики и коэффициенты передачи элементов и САУ. Расчет статических характеристик и коэффициентов передачи элементов и САУ	2
1.2 Анализ и классификация математических моделей.мехатронных систем. Анализ и классификация математических моделей.мехатронных систем	2
Итого по разделу 1:	4
Раздел 2 Динамический режим	
2.1 Передаточные функции элементов и САУ . Передаточные функции элементов и САУ	2
2.2 Типовые соединения звеньев. Изучение типовых соединений звеньев	2
Итого по разделу 2:	4
Раздел 3 Частотные характеристики элементов и САУ. Устойчивость мех систем	атронных
3.1 Устойчивость мехатронныхх САУ.	4
3.2 Частотные характеристики мехатронных ситем. Построение	4
частотныч характеристик мехатронных ситем	
Итого по разделу 3:	8
Всего по практическим / семинарским занятиям дисциплины:	16

5.5 Курсовое проектирование

В соответствии с рабочим учебным планом предусмотрено выполнить: Курсовая работа (5 семестр).

Курсовая работа включает в себя исследование устойчивости мехатронной системы.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: ІТметоды, Работа в команде, Методы проблемного обучения, Обучение на основе опыта, Опережающая самостоятельная работа, Поисковый метод, Исследовательский метод.

При проведении лабораторных работ используются следующие образовательные технологии: ІТ-методы, Работа в команде, Case-study, Методы проблемного обучения, Обучение на основе опыта, Проектный метод, Исследовательский метод.

При проведении практических занятий используются следующие образовательные технологии: ІТ-методы, Работа в команде, Методы проблемного обучения, Опережающая самостоятельная работа, Поисковый метод, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Методы проблемного обучения, Обучение на основе опыта, Опережающая самостоятельная работа, Проектный метод, Исследовательский метод.

Общее число часов занятий, проводимых в интерактивной форме – 16 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь межлу	формируемыми	компетенциями и о	hормами	контроля их освоения:
Свизв между	формир усмыми	компетенциими и с	popmamn	KUIII PUJIA MA UCBUCIIMA.

Компетенция	Индикаторы	Аттестационные мероприятия
	освоения	
ОПК-1	3-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР5, КР2, Экзамен
		(5 сем.), Курсовая работа
ОПК-1	У-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2,
		Экзамен (5 сем.), Курсовая работа
ОПК-1	В-ОПК-1	ЛР1, ЛР2, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2, Экзамен
		(5 сем.), Курсовая работа
УКЕ-1	3-УКЕ-1	ЛР1, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2, Экзамен (5
		сем.), Курсовая работа
УКЕ-1	У-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР6, КР2, Экзамен
		(5 сем.), Курсовая работа
УКЕ-1	В-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, Д31, КР1, ЛР5, ЛР6, КР2,
		Экзамен (5 сем.), Курсовая работа

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Экзамена.

Аттестация в 5 семестре:

Вид		Максимальная	Минимальная						
	Наименование видов контроля	положительная	положительная						
контроля		оценка в баллах	оценка в баллах						
Текущая аттестация									
ЛР1	Лабораторная работа	6	3.6						
ЛР2	Лабораторная работа	6	3.6						
ЛР3	Лабораторная работа	6	3.6						
ЛР4	Лабораторная работа	7	4.2						
Д31	Домашнее задание	8	4.8						
KP1	Контрольная работа	7	4.2						
ЛР5	Лабораторная работа	8	4.8						
ЛР6	Лабораторная работа	5	3						
KP2	Контрольная работа	7	4.2						
	Сумма:	60	36						
Промежуточная аттестация									
Экзамен		40	24						
	Итого:	100	60						

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ECTS)	Α	В	С	Ι)	Е	F
Оценка по 4-х	отлично		хорошо		удовлетво	рительно	неудовлетворительно
бальной шкале	(отл.)		(xop.)		(удо	вл.)	(неуд.)
Зачет	Зачтено						Не зачтено

Оценка «*отмично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Экзамена (5 семестр):

- 1 Принцип регулирования по возмущению: назначение, построение, принцип действия
 - 2 Критерий Найквиста.
 - 3 Принцип регулирования по отклонению: назначение, принцип действия
 - 4 Апериодическое звено: определение, уравнения, характеристики
 - 5 Понятие характеристического уравнения, его значимость. Способы нахождения
 - 6 Дифференцирующее звено: определение, уравнения, характеристики
- 7 Понятие критического коэффициента усиления. Условия границы устойчивости по различным критериям устойчивости.
 - 8 Логарифмические частотные характеристики:вычисление, оси координат
 - 9 Вычисление передаточных функций по структурной схеме замкнутой системы
 - 10 Показатели качества переходного процесса
 - 11 Критерий Гурвица: исходное уравнение, порядок оценки.
 - 12 Понятие операторного уравнения, его получение: стандартный вид, назначение
 - 13 Колебательное звено: определение, уравнения, характеристики
- 14 Перестановка точки разветвления через звено. Проверка правильности преобразования
- 15 Перестановка узла суммирования через звено. Проверка правильности преобразования
 - 16 Оценка устойчивости замкнутых систем по ЛЧХ разомкнутой системы
 - 17 Понятие структурной схемы. Методы ее построения
 - 18 Частотные критерии устойчивости
 - 19 Дифференцирующее звено: определение, уравнения, характеристики.
- 20 Понятие статического режима. Статические характеристики по возмущению, их количественные показатели
 - 21 Передаточные функции типовых соединений звеньев.
 - 22 Критерий Михайлова.
 - 23 Интегрирующее звено: уравнения, характеристики

- 24 Понятие разомкнутой системы. Вычисление передаточной функции.
- 25 Понятие устойчивости и неустойчивости замкнутой системы. Теоремы Ляпунова
- 26 Пути оценки устойчивости замкнутых систем. Понятие левых и правых корней.
- 27 Основные формулы прямого преобразования Лапласа, их назначение
- 28 Типовые динамические звенья: признаки, названия, уравнения
- 29 Понятие автоматической системы. Замкнутая и разомкнутая системы, вычисление их коэффициента передачи.
- 30 Понятие динамического режима. Причины возникновения. Дифференциальные и операторные уравнения, их стандартный вид.
 - 31 Понятие АФХ и ЛЧХ, их оси координат и вычисление.

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Бородин И. Ф. Автоматизация технологических процессов и системы автоматического управления: учебник для вузов / И. Ф. Бородин, С. А. Андреев. Москва: Юрайт, 2024 377 с
- Л1.2 Ким Д. П. Теория автоматического управления: учебник и практикум для вузов / Д. П. Ким. Москва: Юрайт, 2024 276 с
- Л1.3 Ягодкина Т. В. Теория автоматического управления: учебник и практикум для вузов / Т. В. Ягодкина, В. М. Беседин. Москва: Юрайт, 2024 470 с

8.2 Дополнительная литература

- Л2.1 Ефанов А. В. Теория автоматического управления [Электронный ресурс]: учебник для вузов / Ефанов А. В., Ярош В. А.; Ефанов А. В. Санкт-Петербург: Лань, 2023 160 с.
- Л2.2 Ким Д. П. Теория автоматического управления. Линейные системы. Задачник: учебное пособие для вузов / Д. П. Ким, Н. Д. Дмитриева. Москва: Юрайт, 2024 169 с
- Л2.3 Ким Д. П. Теория автоматического управления. Многомерные, нелинейные, оптимальные и адаптивные системы. Задачник: учебное пособие для вузов / Д. П. Ким. Москва: Юрайт, 2024 331 с

8.3 Информационно-образовательные ресурсы

- Э1 ЭБС НИЯУ МИФИ http://library.mephi.ru/
- Э2 ЭБС elibrary http://www.elibrary.ru/

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные

мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Практические занятия. Для подготовки к практическому занятию, необходимо повторить теоретический материал по теме с использованием лекций и рекомендуемой литературы.

На занятии желательно иметь конспект лекций (или учебник, учебное пособие), чтобы самостоятельно или с сокурсниками и преподавателем сориентироваться на каждую тему решаемой задачи, поставленной проблемы и пр.

При решении задач:

- 1) нужно обосновать каждый этап решения, исходя из теоретических положений дисциплины. Если студент видит несколько путей решения, то он должен сравнить их и выбрать из них самый лучший;
- 2) решения задач и примеров следует излагать подробно, вычисления располагать в строгом порядке, отделяя вспомогательные вычисления от основных;
- 3) рисунки (графики) можно выполнять от руки, но аккуратно и в соответствии с данными условиями;
- 4) решение каждой задачи должно доводиться до ответа, требуемого условием, и по возможности в общем виде с выводом формулы. Полученный ответ следует проверять способами, вытекающими из существа данной задачи.

При обсуждении основных положений и выводов, объяснении явлений и фактов, ответа на поставленные вопросы:

- 1) вырабатываются умения и навыки использовать приобретенные знания для различного рода деятельности;
- 2) выступление должно строиться свободно, убедительно и аргументированно и не должно сводиться к простому воспроизведению текста, не допускается и простое чтение конспекта. Необходимо, чтобы выступающий проявлял собственное отношение к тому, о чем он говорит, высказывал свое личное мнение, понимание, обосновывал его и мог сделать правильные выводы из сказанного. При этом студент может обращаться к записям конспекта и лекций, непосредственно к первоисточникам, использовать факты и наблюдения современной жизни и т. д.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в специализированных лабораториях института.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях кафедры запрещается находиться в верхней одежде. На рабочем столе должно находиться только необходимое оборудование и приборы для записей и расчетов. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней. Запрещается включать какие-либо приборы или без предварительной проверки их преподавателем или лаборантом. После окончания работы студент должен сдать лаборанту выданные принадлежности, привести в порядок рабочее место, получить отметку в журнале о выполнении работы, предъявив для этого полученные результаты преподавателю.

Не начинайте выполнение опыта пока не уясните себе полностью его цель, метод и не составите план проведения опыта. Так как время проведения опыта ограничено учебными часами, отведенными на него, то всю подготовку необходимо провести самостоятельно до занятий.

Для записи результатов измерения в отчете должны быть заранее подготовлены таблицы, включающие как сами измерения, так и их погрешности.

К следующему занятию студент готовит очередную работу и предъявляет отчет о работе, выполненной на предыдущем занятии. Работа считается окончательно сданной после защиты отчета. Студент должен оформить отчет по прилагаемой форме:

- 1) название работы;
- 2) цель работы;
- 3) краткие сведения из теории, схема установки и основные рабочие формулы;
- 4) результаты измерений, представленные в виде таблиц и графиков;
- 5) расчет искомой величины и ее значение;
- 6) расчет ошибки измерения;
- 7) окончательный результат, полученный после округления, с указанием абсолютной и относительной ошибок измерения;
- 8) выводы, заключение о достижении цели, поставленной данной работой, с анализом полученного результата.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, практических, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к экзамену
- Подготовка к практическим занятиям, семинарам
- Выполнение домашних заданий
- Подготовка к промежуточному контролю: Экзамен (5 семестр), Курсовая работа (5 семестр)

В течение 5 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Экзамену по дисциплине. Студент на Экзамене должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): С.В.Ляпушкин