МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ»

Северский технологический институт -

филиал федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ»

(СТИ НИЯУ МИФИ)

Кафедра «Высшей математики и информационных технологий»

ОДОБРЕНО Ученым советом СТИ НИЯУ МИФИ протокол № 6 от 30.08.2024

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ ВЫЧИСЛИТЕЛЬНЫЕ ЗАДАЧИ СИСТЕМ АВТОМАТИЗАЦИИ

НАПРАВЛЕНИЕ ПОДГОТОВКИ

15.03.06 Мехатроника и робототехника

НАИМЕНОВАНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Разработка роботизированных систем для атомной промышленности

Форма обучения: очная

Семестр	Трудоемкость, ЗЕ	Общий объем курса, час.	Лекции, час.	Практические занятия, час.	Лабораторные работы, час.	В форме практической подготовки / в интерактивной форме, час.	СРС, час.	Форма(ы) контроля (Э, 3, Диф3, КР, КП)
3	4	144	32	0	16	16	96	Диф3
Итого	4	144	32	0	16	16	96	

Аннотация

Рабочая программа дисциплины «Вычислительные задачи систем автоматизации» составлена в соответствии с требованиями образовательного стандарта НИЯУ МИФИ и рабочим учебным планом по направлению подготовки (специальности) 15.03.06 «Мехатроника и робототехника», образовательной программы «Разработка роботизированных систем для атомной промышленности».

В результате освоения дисциплины, у выпускника должны быть сформированы следующие результаты обучения (РО):

1) знать:

- 3.1 численные методы решения инженерных задач
- 3.2 современные математические пакеты и средства разработки приложений
- 3.3 ресурсы, необходимые для решения поставленной задачи
- 3.4 численные методы решения инженерных задач
- 3.5 ресурсы, необходимые для решения поставленной задачи

2) уметь:

- У.1 сравнивать методы (методики) решения поставленной задачи, выбирать методы (методики) решения задач
 - У.2 составлять алгоритм решения поставленной задачи
- У.3 реализовывать алгоритмы на одном из языков программирования высокого уровня
- У.4 пользоваться математическими пакетами и средствами разработки приложений для реализации составленных алгоритмов
 - У.5 интерпретировать результаты компьютерного моделирования
- У.6 сравнивать методы (методики) решения поставленной задачи, выбирать методы (методики) решения задач
 - У.7 составлять алгоритм решения поставленной задачи

3) владеть или быть в состоянии продемонстрировать:

- В.1 навыками аналитического и численного решения задач
- В.2 поиском информации о способах (методах) решения поставленной задачи
- В.3 формированием алгоритма решения задач
- В.4 навыками работы в математических пакетах и средствах разработки приложений
- В.5 навыками аналитического и численного решения задач
- В.6 поиском информации о способах (методах) решения поставленной задачи
- В.7 формированием алгоритма решения задач

1 Цели и задачи освоения учебной дисциплины

Целями освоения дисциплины «Вычислительные задачи систем автоматизации» являются:

формирование компетенций, необходимых для численного решения инженерных и научных задач

Основными задачами дисциплины являются:

- освоение студентами рабочей программы данной дисциплины, изучение принципов, методов и средств вычислительной математики, основных численных методов;
 - овладение методами численного решения математических задач;

- формирование навыков компьютерного моделирования.

2 Место учебной дисциплины в структуре ООП ВО

Дисциплина «Вычислительные задачи систем автоматизации» (Б1.Б.2.5) - Естественно-научный модуль образовательной программы.

3 Формируемые компетенции и планируемые результаты обучения

Универсальные и общепрофессиональные компетенции:

Код и наименование компетенции	Код и наименование индикатора достижения компетенции
ОПК-1 Способен применять	З-ОПК-1 знать фундаментальные понятия, определения,
естественнонаучные и общеинженерные	положения, законы, теории и методы общеинженерных наук,
знания, методы математического анализа и	необходимые для решения задач профессиональной
моделирования в профессиональной	деятельности.
деятельности	У-ОПК-1 уметь применять фундаментальные понятия,
	положения, законы, теории и методы общеинженерных наук для
	решения задач профессиональной деятельности с учетом границ
	их применимости.
	В-ОПК-1 владеть навыками применения методами математи-
	четского анализа и моделирования при рассмотрении задач
	профессиональной деятельности.
УКЕ-1 Способен использовать знания	3-УКЕ-1 знать: основные законы естественнонаучных
естественнонаучных дисциплин, применять	дисциплин, методы математического анализа и моделирования,
методы математического анализа и	теоретического и экспериментального исследования
моделирования, теоретического и	У-УКЕ-1 уметь: использовать математические методы в
экспериментального исследования в	технических приложениях, рассчитывать основные числовые
поставленных задачах	характеристики случайных величин, решать основные задачи
	математической статистики; решать типовые расчетные задачи
	В-УКЕ-1 владеть: методами математического анализа и
	моделирования; методами решения задач анализа и расчета
	характеристик физических систем, основными приемами
	обработки экспериментальных данных, методами работы с
	прикладными программными продуктами

4 Воспитательный потенциал учебной дисциплины

Воспитательный потенциал дисциплины «Вычислительные задачи систем автоматизации» отражен в Рабочей программе воспитания в Северском технологическом институте — филиале федерального государственного автономного образовательного учреждения высшего образования «Национальный исследовательский ядерный университет «МИФИ» (https://edu.ssti.ru/course/index.php?categoryid=145).

5 Структура и содержание учебной дисциплины

5.1 Основные разделы дисциплины, трудоемкость и виды учебной работы

Настоящая рабочая программа составлена для формы обучения **«очная»** по направлению 15.03.06 «Мехатроника и робототехника», образовательной программе «Разработка роботизированных систем для атомной промышленности».

Общая трудоемкость дисциплины составляет в зачетных единицах -4, 144 час., обучение по дисциплине проходит в семестре 3.

Дисциплина (модуль) содержит разделы:

- раздел 1 - «Численные методы инженерных расчетов»

Трудоемкость, формы и график контроля по разделам дисциплины представлены в таблице 1.

Таблица 1 – Трудоемкость, формы и график контроля отдельных разделов дисциплины

No	Наименорание раздела	Виды учебной деятельности, включая самостоятельную работу студентов и трудоемкость, час			боту	Аттестационные ме	Макс. балл		
145	Наименование раздела	Лекции	Практ. занятия	Лабор. работы	Самост. работа	Текущий контроль (нед/форма)	Аттестация раздела (нед/ форма)	за раздел	
		3	семес	тр (18	недел	ь)			
1	1 Численные методы инженерных расчетов			16	96	9/ЛР1, 11/ЛР2, 13/ЛР3, 15/ЛР4	16/KP1	60	
	Дифференцированный зач	ет						40	
Итог	го за 3 семестр:	32		16	96			100	

В таблице 2 представлено соответствие содержания каждого раздела и результатов обучения, что позволяет оценить их вклад в достижение целей курса.

Таблица 2 – Соответствие содержания требуемым результатам обучения

Код и наименование индикатора достижения	Номера	Аттестационные
компетенции	разделов	мероприятия
– знать фундаментальные понятия, определения, положения, законы, теории и методы общеинженерных наук, необходимые для решения задач профессиональной деятельности. (3-ОПК-1)	1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)
– уметь применять фундаментальные понятия, положения, законы, теории и методы общеинженерных наук для решения задач профессиональной деятельности с учетом границ их применимости. (У-ОПК-1)	1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)
 – владеть навыками применения методами математи- че¬ского анализа и моделирования при рассмотрении задач профессиональной деятельности. (B-OПК-1) 	1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)
- знать: основные законы естественнонаучных дисциплин, методы математического анализа и моделирования, теоретического и экспериментального исследования (3-УКЕ-1)	1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)
– уметь: использовать математические методы в технических приложениях, рассчитывать основные числовые характеристики случайных величин, решать основные задачи математической статистики; решать типовые расчетные задачи (У-УКЕ-1)	1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)
- владеть: методами математического анализа и моделирования; методами решения задач анализа и расчета характеристик физических систем, основными приемами обработки экспериментальных данных, методами работы с прикладными программными продуктами (В-УКЕ-1)	1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)

5.2 Содержание лекционного курса дисциплины

Содержание лекционного курса дисциплины представлено в таблице 4.

Таблица 3 - Содержание и трудоемкость лекционного курса по разделам в целом по дисциплине

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Раздел 1 Численные методы инженерных расчетов	
1.1 Элементы теории погрешностей. Причины возникновения	2
погрешностей. Классификация погрешностей. Неустранимая погрешность,	
устранимая погрешность. Устойчивость. Абсолютная и относительная	
погрешности	
1.2 Численные методы решения нелинейных уравнений. Аналитический	4
и графический методы отделения корней нелинейных уравнений. Методы	
уточнения корней: метод дихотомии, метод простых итераций, метод	
касательных, метод хорд	
1.3 Численные методы решения систем линейных уравнений. Метод	2
Гаусса. Метод простых итераций	
1.4 Полиномиальная интерполяция сеточных функций. Постановка	4
задачи интерполяции. Интерполяционный многочлен Лагранжа.	
Интерполяционный многочлен Ньютона для равных и неравных	
промежутков	
1.5 Среднеквадратическое приближение сеточных функций. Постановка	4
задачи аппроксимации. Метод наименьших квадратов. Сглаживание	
экспериментальных данных. Эмпирические формулы	
1.6 Численное дифференцирование. Вычисление производной по её	2
определению. Конечные разности. Формулы численного	
дифференцирования для первой и второй производной	
1.7 Численное интегрирование. Простейшие квадратурные формулы.	4
Формулы прямоугольников, трапеций, Симпсона для вычисления	
определенных интегралов	
1.8 Численное решение дифференциальных уравнений первого	4
порядка. Задача Коши для ОДУ первого порядка. Метод Эйлера. Методы	
Рунге-Кутты	
1.9 Численное решение систем дифференциальных уравнений первого	2
порядка. Задача Коши для систем дифференциальных уравнений первого	
порядка. Численное решение систем ОДУ методом Рунге-Кутты четвертого	
порядка	
1.10 Численное решение дифференциальных уравнений второго	2
порядка. Задача Коши для ОДУ второго порядка. Сведение задачи Коши	
для ОДУ второго порядка к задаче Коши для системы ОДУ первого	
порядка. Применение метода Рунге-Кутты	
1.11 Численное решение систем дифференциальных уравнений первого	2
порядка. Задача Коши для системы ОДУ второго порядка. Сведение задачи	
Коши для системы ОДУ второго порядка к задаче Коши для системы ОДУ	
первого порядка. Применение метода Рунге-Кутты	
Итого по разделу 1:	32

Содержание разделов / тематика разделов	Трудоемкость разделов/тем, ауд. час
Всего по теоретическому разделу дисциплины:	32

5.3 Содержание лабораторного практикума

В таблице 4 представлено содержание и трудоемкость лабораторного практикума дисциплины.

Таблица 4 – Содержание и трудоемкость лабораторного практикума дисциплины

Перечень лабораторных работ по разделам и их содержание	Трудоемкость разделов/тем, ауд. час
Раздел 1 Численные методы инженерных расчетов	
1.1 Решение нелинейных уравнений и систем линейных уравнений.	4
Численное решение нелинейных уравнений и систем линейных уравнений в	
MathCad и в среде Turbo Pascal	
1.2 Интерполяция экспериментальных данных. Составление	4
интерполяционных многочленов в MathCad и в среде Turbo Pascal	
1.3 Численное дифференцирование и численное интегрирование.	4
Вычисление первой, второй производной и определенных интегралов в	
MathCad и в среде Turbo Pascal	
1.4 Решение ОДУ и их систем. Численное решение ОДУ и их систем в	4
MathCad и в среде Turbo Pascal	
Итого по разделу 1:	16
Всего по лабораторному практикуму дисциплины:	16

5.4 Тематика практических / семинарских занятий

Практические/семинарские занятия в соответствии с рабочим учебным планом не предусмотрены.

5.5 Курсовое проектирование

Курсовая работа/проект в соответствии с рабочим учебным планом не предусмотрены.

6 Образовательные технологии

При проведении лекций используются следующие образовательные технологии: Обучение на основе опыта, Исследовательский метод.

При проведении лабораторных работ используются следующие образовательные технологии: ІТ-методы, Обучение на основе опыта, Исследовательский метод.

Для организации самостоятельной работы используются следующие образовательные технологии: ІТ-методы, Исследовательский метод.

Общее число часов занятий, проводимых в интерактивной форме – 16 час.

7 Аннотация фонда оценочных средств

Фонд оценочных средств по дисциплине обеспечивает проверку освоения планируемых результатов обучения (компетенций и их индикаторов) посредством мероприятий текущего, рубежного и промежуточного контроля по дисциплине.

Связь между о	рормируемыми	компетенциями и о	формами ко	онтроля их освоения:
---------------	--------------	-------------------	------------	----------------------

Компетенция Индикаторы		Аттестационные мероприятия			
	освоения				
ОПК-1	3-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)			
ОПК-1	У-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)			
ОПК-1	В-ОПК-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)			
УКЕ-1	3-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)			
УКЕ-1	У-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)			
УКЕ-1	В-УКЕ-1	ЛР1, ЛР2, ЛР3, ЛР4, КР1, ДифЗачет (3 сем.)			

Шкалы оценки образовательных достижений. Шкала каждого контрольного мероприятия лежит в пределах от 0 до установленного максимального балла включительно. Итоговая аттестация по дисциплине оценивается по 100-балльной шкале и представляет собой сумму баллов, заработанных студентом при выполнении заданий в рамках текущего (**60 баллов**) и промежуточного контроля (**40 баллов**). Для допуска к промежуточному контролю по дисциплине студенту в течение календарного модуля необходимо набрать не менее 60% баллов при условии сдачи **всех** дисциплинарных разделов. Раздел считается сданным, если выполнены все виды контроля и набрано по ним не менее 60 % баллов от максимального по разделу.

В соответствии с учебным планом промежуточная аттестация в конце семестра осуществляется в форме Диф. зачета.

Аттестация в 3 семестре:

Вид	Наименование видов контроля	Максимальная положительная	Минимальная положительная					
контроля		оценка в баллах	оценка в баллах					
	Текущая аттестац	ия						
ЛР1	Лабораторная работа	10	6					
ЛР2	Лабораторная работа	10	6					
ЛР3	Лабораторная работа	10	6					
ЛР4	Лабораторная работа	10	6					
КР1	Контрольная работа	20	12					
	Сумма:	60	36					
	Промежуточная аттестация							
Дифференцир	ованный зачет	40	24					
	Итого:	100	60					

Итоговая оценка выставляется в соответствии со следующей шкалой:

Сумма баллов по дисциплине	100–90	89–85	84–75	74–70	69–65	64–60	ниже 60
Оценка (ЕСТЅ)	A	В	C	I)	Е	F
Оценка по 4-х	отлично		хорошо		удовлетворительно		неудовлетворительно
бальной шкале	(отл.)		(xop.)			овл.)	(неуд.)
Зачет		Зачтено					Не зачтено

Оценка «*отлично*» выставляется студенту, если он глубоко и прочно усвоил программный материал, исчерпывающе, последовательно, четко и логически стройно его

излагает, умеет тесно увязывать теорию с практикой, использует в ответе материал монографической литературы.

Оценка «*хорошо*» выставляется студенту, если он твёрдо знает материал, грамотно и по существу излагает его, не допуская существенных неточностей в ответе на вопрос.

Оценка «удовлетворительно» выставляется студенту, если он имеет знания только основного материала, но не усвоил его деталей, допускает неточности, недостаточно правильные формулировки, нарушения логической последовательности в изложении программного материала.

Оценка *«неудовлетворительно»* выставляется студенту, который не знает значительной части программного материала, допускает существенные ошибки. Как правило, оценка «неудовлетворительно» ставится студентам, которые не могут продолжить обучение без дополнительных занятий по соответствующей дисциплине.

Вопросы для Дифференцированного зачета (3 семестр):

- 1 Источники погрешности. Абсолютная и относительная погрешности
- 2 Графический метод отделения корней нелинейных уравнений
- 3 Аналитический метод отделения корней нелинейных уравнений
- 4 Метод дихотомии решения нелинейных уравнений
- 5 Метод касательных решения нелинейных уравнений
- 6 Метод секущих решения нелинейных уравнений
- 7 Метод Гаусса решения систем линейных уравнений
- 8 Метод простых итераций решения систем линейных уравнений
- 9 Постановка задачи интерполяции
- 10 Интерполяционный полином Лагранжа
- 11 Интерполяционный полином Ньютона для равных промежутков
- 12 Постановка задачи аппроксимации функций. Метод наименьших квадратов
- 13 Формулы численного дифференцирования для первой производной
- 14 Формулы численного дифференцирования для второй производной
- 15 Простейшие квадратурные формулы
- 16 Формула прямоугольников
- 17 Формула трапеций
- 18 Формула Симпсона
- 19 Метод Эйлера решения дифференциальных уравнений первого порядка
- 20 Метод Рунге-Кутта решения дифференциальных уравнений первого порядка
- 21 Численное решение задачи Коши для дифференциальных уравнений второго порядка
- 22 Численное решение задачи Коши для системы двух дифференциальных уравнений первого порядка

8 Учебно-методическое и информационное обеспечение учебной дисциплины

8.1 Основная литература

- Л1.1 Срочко В. А. Численные методы. Курс лекций [Электронный ресурс] / Срочко В. А. Санкт-Петербург: Лань, 2022 208 с.
- Л1.2 Киреев В. И. Численные методы в примерах и задачах: учебное пособие / В. И. Киреев, А. В. Пантелеев Санкт-Петербург: Издательство Лань, 2020 448 с.

8.2 Дополнительная литература

- Л2.1 Демидович Б. П. Численные методы анализа. Приближение функций, дифференциальные и интегральные уравнения [Электронный ресурс] / Демидович Б. П.,Марон И. А.,Шувалова Э. 3. Санкт-Петербург: Лань, 2022 400 с.
- Л2.2 Копченова Н. В. Вычислительная математика в примерах и задачах [Электронный ресурс] / Копченова Н. В., Марон И. А. Санкт-Петербург: Лань, 2021 368 с.
- Л2.3 Мельникова Н. А. Численное решение нелинейных уравнений [Электронный ресурс] : методические указания к лабораторной работе / Н. А. Мельникова, М. М. Немирович-Данченко. Северск : Издательство СТИ НИЯУ МИФИ, 2019 20 с.
- Л2.4 Мельникова Н. А. Численное решение систем линейных уравнений [Электронный ресурс] : методические указания к лабораторной работе / Н. А. Мельникова Северск : Издательство СТИ НИЯУ МИФИ, 2024 23 с.
- Л2.5 Мельникова Н. А. Численное дифференцирование и численное интегрирование [Электронный ресурс] : методические указания к лабораторной работе / Н. А. Мельникова Северск : Издательство СТИ НИЯУ МИФИ, 2024 23 с.

8.3 Информационно-образовательные ресурсы

- Э1 http://library.mephi.ru Распределенный сводный каталог библиотек институтов НИЯУ МИФИ
- Э2 http://www.ssti.ru/cgi-bin/zgate/zgate?Init+ssti.xml,simple.xsl+rus Электронный каталог библиотеки СТИ
 - Э3 http://www.exponenta.ru образовательный математический сайт
 - Э4 http://univertv.ru образовательный видеопортал

9 Материально-техническое обеспечение учебной дисциплины

Материально-техническое обеспечение дисциплины приведено на сайте СТИ НИЯУ МИФИ https://www.sti.mephi.ru/objects.html

10 Учебно-методические рекомендации для студентов

Самостоятельная работа студентов – это планируемая учебная и внеаудиторная работа студентов, выполняемая по заданию преподавателя и под его методическим руководством, но без его непосредственного участия.

Целью самостоятельной работы студентов является приобретение новых знаний, систематизация и закрепление полученных теоретических знаний и практических умений студентов.

Лекции. Рекомендации по написанию конспекта лекций: кратко, последовательно фиксировать основные положения, выводы, формулировки, обобщения: помечать основные мысли, выделять ключевые слова, термины. Проверка терминов, понятий с помощью энциклопедий, словарей, справочников с выписыванием толкований в тетрадь (тезаурус). Обозначение вопросов, терминов, материала, которые вызывают трудности, поиск ответов в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на следующем занятии или консультации.

Лабораторные работы. Подготовка к лабораторной работе включает в себя работу с конспектом лекций, рекомендуемой литературой, подготовку ответов к контрольным вопросам для допуска к выполнению лабораторной работы, написание отчета.

Лабораторные занятия проводятся в лабораториях Информационно-вычислительного центра.

Прежде чем начать занятия в данной лаборатории студент знакомится с правилами техники безопасности, о чем расписывается в журнале. В лабораториях ИВЦ запрещается

находиться в верхней одежде. Запрещается класть на рабочий стол сумки, пакеты, шапки и другие посторонние предметы. Студент приступает к выполнению лабораторной работы только после ознакомления с описанием работы и подготовки к ней.

Промежуточная аттестация. Для подготовки к промежуточной аттестации студенту необходимо проработать конспекты лекционных и практических занятий, подготовить ответы к вопросам, выносимым на промежуточную аттестацию, при необходимости воспользоваться рекомендуемой литературой.

11 Учебно-методические рекомендации для преподавателей

На лекционных, лабораторных занятиях студентам сообщаются новые сведения, систематизируется и обобщается накопленный запас знаний, формируются на этой основе познавательные и профессиональные интересы. Преподаватель, проводя занятия, должен стремиться увлечь студентов, активно воздействовать на их эмоции, вызвать интерес к учебному предмету, стремление постоянно пополнять знания.

Самостоятельная работа студентов по данному курсу

- Проработка лекционного материала
- Подготовка к лабораторным работам
- Оформление отчетов по лабораторным работам
- Подготовка к промежуточному контролю: Дифференцированный зачет (3 семестр)

В течение 3 семестра осуществляется контроль знаний студентов: см. раздел 5.1.

По результатам аттестационных мероприятий формируется допуск студента к итоговому контролю — Дифференцированному зачету по дисциплине. Студент на Дифференцированном зачете должен показать знание программного материала, исчерпывающе, последовательно, четко и логически стройно его излагать, уметь тесно увязывать теорию с практикой, использовать в ответе материал рекомендуемой литературы.

Автор(ы): Н.А. Мельникова